Hostname: page-component-68c7f8b79f-j6k2s Total loading time: 0 Render date: 2025-12-18T07:27:09.010Z Has data issue: false hasContentIssue false

Measurements of the Poiseuille coefficient in the slip and transitional flow regimes

Published online by Cambridge University Press:  12 December 2025

Emil Grigorov
Affiliation:
Aix-Marseille Université, CNRS, IUSTI UMR 7343, 5 rue E. Fermi, 13453 Marseille, France
Felix Sharipov
Affiliation:
Departamento de Física, Universidade Federal do Paraná, Curitiba 81531-980, Brazil
Pierre Perrier
Affiliation:
Aix-Marseille Université, CNRS, IUSTI UMR 7343, 5 rue E. Fermi, 13453 Marseille, France
Frédéric Topin
Affiliation:
Aix-Marseille Université, CNRS, IUSTI UMR 7343, 5 rue E. Fermi, 13453 Marseille, France
Irina Graur*
Affiliation:
Aix-Marseille Université, CNRS, IUSTI UMR 7343, 5 rue E. Fermi, 13453 Marseille, France
*
Corresponding author: Irina Graur; irina.martin@univ-amu.fr

Abstract

New experimental results on gas flow through a long tube in the viscous, slip and transitional regimes are presented, obtained using an improved constant-volume measurement technique. This method is based on measuring the pressure variation in the inlet tank while the outlet tank is evacuated to a low pressure. Experimental pressure data for helium, neon, argon, nitrogen, krypton and xenon are used to extract the Poiseuille coefficient through a newly developed methodology. The obtained values show good agreement with theoretical predictions. Additionally, the velocity slip coefficient is also extracted from the same pressure data for all tested gases.

Information

Type
JFM Papers
Copyright
© The Author(s), 2025. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Ameri, A.R., Imanparast, A., Passandideh-Fard, M. & Shaegh, S.A.M. 2022 Elsevier analytica chimica acta volume 1221, 15 august 2022, 340093 analytica chimica acta a whole-thermoplastic microfluidic chip with integrated on-chip micropump, bioreactor and oxygenator for cell culture applications. Anal. Chim. Acta 1221, 340093.10.1016/j.aca.2022.340093CrossRefGoogle Scholar
An, S., Gupta, N.K. & Gianchandani, Y.B. 2014 A si-micromachined 162-stage two-part a si-micromachined 162-stage two-part knudsen pump for on-chip vacuum. J. Microelectromech. Syst. 23 (2), 406416.10.1109/JMEMS.2013.2281316CrossRefGoogle Scholar
Arkilic, E.B., Schmidt, M.A. & Breuer, K.S. 1997 Gaseous slip flow in long microchannels. J. Microelectromech. Syst. 6 (2), 167178.10.1109/84.585795CrossRefGoogle Scholar
Basdanis, T., Valougeorgis, D. & Sharipov, F. 2023 Viscous and thermal velocity slip coefficient via the linearized boltzmann equation with ab initio potential. Microfluid. Nanofluid. 25, 75.10.1007/s10404-023-02681-0CrossRefGoogle Scholar
Bell, Ian H., Wronski, Jorrit, Quoilin, Sylvain & Lemort, Vincent 2014 Pure and pseudo-pure fluid thermophysical property evaluation and the open-source thermophysical property library coolprop. Ind. Eng. Chem. Res. 53 (6), 24982508.10.1021/ie4033999CrossRefGoogle ScholarPubMed
Berg, R.F. & Burton, W.C. 2013 Noble gas viscosities at 25 $^\circ$ C. Mol. Phys. 111 (2), 195199.10.1080/00268976.2012.713132CrossRefGoogle Scholar
Berg, R.F., Gooding, T. & Vest, R.E. 2014 Constant pressure primary flow standard for gas flows from 0.01 cm $^3$ min−1 (0.007–74 $\unicode{x03BC}$ mol s−1). Flow Meas. Instrument. 35, 8491.10.1016/j.flowmeasinst.2013.12.002CrossRefGoogle Scholar
Berman, A. 1985 Total pressure measurements in vacuum technology. In Methods for Vacuum Gauge Callibration. 242320. Academic Press.Google Scholar
Bhandarkar, S., Parham, T. & Fair, J. 2011 Modeling and experiments of compressible gas flow through microcapillary fill tubes on NIF target. Fusion Sci. Technol. 59 (1), 5157.10.13182/FST10-3718CrossRefGoogle Scholar
Bhatnagar, P.L., Gross, E.P. & Krook, M. 1954 A model for collision processes in gases. I. Small amplitude processes in charged and neutral one-component systems. Phys. Rev. 94 (3), 511525.10.1103/PhysRev.94.511CrossRefGoogle Scholar
Caldwell, A. et al. 2016 Path to awake: evolution of the concept. Nuclear instruments and methods in physics. Res. Sect. A: Asselerat. Spectrom. Detectors Assoc. Equipm. 829, 316.Google Scholar
Cercignani, C. & Sernagiotto, F. 1966 Cylindrical couette flow of a rarefied gas. Phys. Fluids 10 (6), 12001204.10.1063/1.1762263CrossRefGoogle Scholar
Cole, W.A. & Wakeham, W.A. 1985 The viscosity of nitrogen, oxygen, and their binary-mixtures in the limit of zero density. J. Phys. Chem. Ref. Data 14 (1), 209226.10.1063/1.555748CrossRefGoogle Scholar
Colin, S., Lalonde, P. & Caen, R. 2004 Validation of a second-order slip flow model in a rectangular microchannel. Heat Transf. Eng. 25 (3), 2330.10.1080/01457630490280047CrossRefGoogle Scholar
Ewart, T., Perrier, P., Graur, I.A. & Méolans, J.G. 2006 Mass flow rate measurements in gas micro flows. Exp. Fluids 41 (3), 487498.10.1007/s00348-006-0176-zCrossRefGoogle Scholar
Ewart, T., Perrier, P., Graur, I.A. & Méolans, J.G. 2007 Mass flow rate measurements in microchannel, from hydrodynamic to near free molecular regimes. Fluid Mech. 584, 337356.10.1017/S0022112007006374CrossRefGoogle Scholar
Ferziger, J.H. & Kaper, H.G. 1972 Mathematical Theory of Transport Processes in Gases. North-Holland Publishing Company.Google Scholar
GUM 2008 Evaluation of Measurement Data – Guide to the Expression of Uncertainty in Measurement. BIPM, IEC, IFCC, ILAC, ISO, IUPAC, IUPAP, OIML.Google Scholar
Hadj Nacer, M., Graur, I., Perrier, P., Méolans, J.G. & Wüest, M. 2014 Gas flow through microtubes with different surface coating. J. Vac. Sci. Technol. A 32 (2), 021601021609.10.1116/1.4828955CrossRefGoogle Scholar
Helleret, N. 1999 Leak detection. Tech. Rep. CERN-OPEN-2000–280. CERN.Google Scholar
Holway, L.H. 1966 New statistical models in kinetic theory: methods of construction. Phys. Fluids 9 (9), 16581673.10.1063/1.1761920CrossRefGoogle Scholar
Johansson, M.V., Testa, F., Zaier, I., Perrier, P., Bonnet, J.P., Moulin, P. & Graur, I. 2018 Mass flow rate and permeability measurements in microporous media. Vacuum 158, 7585.10.1016/j.vacuum.2018.09.030CrossRefGoogle Scholar
Jousten, K. (ed.) 2008 Handbook of Vacuum Technology. WILEY-VCH Verlag GmBH & Co. KGaA.Google Scholar
Jousten, K., Menzer, H. & Niepraschk, R. 2002 A new fully automated gas flowmeter at the ptb for flow rates between $10^{-13}$ mol s−1 and $10^{-6}$ mol s−1 . Metrologia 39 (6), 519.10.1088/0026-1394/39/6/2CrossRefGoogle Scholar
Jousten, K., Messer, G. & Wandrey, D. 1993 A precision gas flowmeter for vacuum metrology. Vacuum 44 (2), 135141.10.1016/0042-207X(93)90362-ECrossRefGoogle Scholar
Kadoya, K., Matsunaga, N. & Nagashima, A. 1985 Viscosity and thermal conductivity of dry air in the gaseous phase. J. Phys. Chem. Ref. Data 14 (4), 947970.10.1063/1.555744CrossRefGoogle Scholar
Marino, L. 2009 Experiments on rarefied gas flows through tubes. Microfluid Nanofluid 6 (1), 109119.10.1007/s10404-008-0311-7CrossRefGoogle Scholar
Maurer, J., Tabeling, P., Joseph, P. & Willaime, H. 2003 Second-order slip laws in microchannels for helium and nitrogen. Phys. Fluids 15, 26132621.10.1063/1.1599355CrossRefGoogle Scholar
McCulloh, K.E., Tilford, C.R., Ehrich, C.D. & Long, F.G. 1987 Low-range flowmeters for use with vacuum and leak standards. J. Vac. Sci. Technol. A Surfaces Films 5 (6), 376381.10.1116/1.574163CrossRefGoogle Scholar
Meija, J. et al. 2016 Atomic weights of the elements 2013 (IUPAC technical report). Pure Appl. Chem. 88 (3), 265291.10.1515/pac-2015-0305CrossRefGoogle Scholar
Peksa, L., Gronych, T., Vicar, M., Jerab, M., Repa, P., Tesar, J., Prazak, D. & Krajicek, Z. 2011 Method of measuring the change in volume of a diaphragm bellows used in a volume displacer of a constant-pressure gas flowmeter (with a practical guide). Measurement 44, 11431152.10.1016/j.measurement.2011.03.008CrossRefGoogle Scholar
Perrier, P., Graur, I.A., Ewart, T. & Méolans, J.G. 2011 Mass flow rate measurements in microtubes: from hygrodynamic to near free molecular regime. Phys. Fluids 23, 042004.10.1063/1.3562948CrossRefGoogle Scholar
Pitakarnnop, J., Varoutis, S., Valougeorgis, D., Geoffroy, S., Baldas, L. & Colin, S. 2010 A novel experimental setup for gas microflows. Microfluid Nanofluid 8, 5772.10.1007/s10404-009-0447-0CrossRefGoogle Scholar
Porodnov, B.T., Suetin, P.E., Borisov, S.F. & Akinshin, V.D. 1974 Experimental investigation of rarefied gas flow in different channels. J. Fluid Mech. 64 (3), 417437.10.1017/S0022112074002485CrossRefGoogle Scholar
Reid, R.C., Prausnitz, J.M. & Poling, B.E. 1987 The Properties of Gases and Liquids. McGraw-Hill.Google Scholar
Rojas-Cárdenas, M., Silva, E., Ho, M.T., Deschamps, C.J. & Graur, I. 2017 Time-dependent methodology for non-stationary mass flow rate measurements in a long micro-tube. Microfluid Nanofluid 21 (5), 86.10.1007/s10404-017-1920-9CrossRefGoogle Scholar
Rykov, V.A. 1975 Model kinetic equation for gases with rotational degree of freedom. J. Fluid Gases 10 (6), 959966.Google Scholar
Seber, G.A.F. & Wild, C.J. 1989 Nonlinear Regression. Wiley-Interscience.10.1002/0471725315CrossRefGoogle Scholar
Shakhov, E.M. 1968 Generalization of the Krook kinetic relaxation equation. Fluid Dyn. 3 (5), 9596.10.1007/BF01029546CrossRefGoogle Scholar
Shan, B., Li, S., Tang, G., Torrilhon, M., Zhang, Y. & Guo, Z. 2025 Molecular kinetic modelling of confined fluid transport – a mesoscopic approach. Acta Mech. Sin. 41, 724893.Google Scholar
Sharipov, F. 1996 Rarefied gas flow through a long tube at any temperature ratio. J. Therm. Sci. Technol. A 14 (4), 26272635.Google Scholar
Sharipov, F. 1997 Rarefied gas flow through a long tube at arbitrary pressure and temperature drop. J. Vac. Sci. Technol. A 15 (4), 24342436.10.1116/1.580904CrossRefGoogle Scholar
Sharipov, F. 2011 Data on the velocity slip and temperature jump on a gas-solid interface. J. Phys. Chem. Ref. Data 40 (2), 023101–128.10.1063/1.3580290CrossRefGoogle Scholar
Sharipov, F. 2016 Rarefied Gas Dynamics. Fundamentals for Research and Practice. Wiley-VCH.10.1002/9783527685523CrossRefGoogle Scholar
Sharipov, F. 2024 Ab initio modelling of transport phenomena in multi-component mixtures of rarefied gases. Int. J. Heat Mass Trans. 220, 124906.10.1016/j.ijheatmasstransfer.2023.124906CrossRefGoogle Scholar
Sharipov, F. & Benites, V.J. 2019 Transport coefficients of argon and its mixtures with helium and neon at low density based ab initio potentials. Fluid Phase Equilibr. 498, 2332.10.1016/j.fluid.2019.06.010CrossRefGoogle Scholar
Sharipov, F. & Benites, V.J. 2021 Transport coefficients of isotopic mixtures of noble gases based on ab initio potentials. Phys. Chem. Chem. Phys. 23, 1666416674.10.1039/D1CP01971FCrossRefGoogle ScholarPubMed
Sharipov, F. & Graur, I. 2014 General approach to transient flows of rarefied gases through long capillaries. Vacuum 100, 2225.10.1016/j.vacuum.2013.07.017CrossRefGoogle Scholar
Sharipov, F. & Graur, I. 2025 New concept to measure the poiseuille coefficient of rarefied gas flow driven by a large pressure drop. Vacuum 240, 114585.10.1016/j.vacuum.2025.114585CrossRefGoogle Scholar
Sharipov, F., Graur, I. & Day, C. 2010 Leak rate of water into vacuum through microtubes. J. Vac. Sci. Technol. A 28 (3), 443448.10.1116/1.3372839CrossRefGoogle Scholar
Sharipov, F., Graur, I. & Salançon, E. 2025 Field ionization intensity used to measure local pressure in gas flow. Vacuum 231, 113728.10.1016/j.vacuum.2024.113728CrossRefGoogle Scholar
Sharipov, F. & Seleznev, V. 1998 Data on internal rarefied gas flows. J. Phys. Chem. Ref. Data 27 (3), 657706.10.1063/1.556019CrossRefGoogle Scholar
Sharipov, F. & Seleznev, V.D. 1994 Rarefied gas flow through a long tube at any pressure ratio. J. Vac. Sci. Technol. A 12 (5), 29332935.10.1116/1.578969CrossRefGoogle Scholar
Sharipov, F. & Strapasson, J.L. 2014 Ab initio simulation of rarefied gas flow through a thin orifice. Vacuum 109, 246252.10.1016/j.vacuum.2014.03.027CrossRefGoogle Scholar
Silva, E., Deschamps, C.J., Rojas Cárdenas, M., Barrot-Lattes, C., Baldas, L. & Colin, S. 2018 A time-dependent method for the measurement of mass flow rate of gases in microchannels. Int. J. Heat Mass Trans. 120, 422434.10.1016/j.ijheatmasstransfer.2017.11.147CrossRefGoogle Scholar
Suetin, P.E., Porodnov, B.T., Chernyak, V.G. & Borisov, S.F. 1973 Poiseuille flow at arbitrary Knudsen number and tangential momentum accommodation. J. Fluid Mech. 60 (3), 581592.10.1017/S0022112073000352CrossRefGoogle Scholar
Sznitman, J. 2022 Revisiting airflow and aerosol transport phenomena in the deep lungs with microfluidics. Chem. Rev. 122, 71827204.10.1021/acs.chemrev.1c00621CrossRefGoogle ScholarPubMed
Tantos, C., Kritikos, E., Varoutis, S. & Day, Ch 2023 Kinetic modeling of polyatomic heat and mass transfer. Heat Mass Transfer 59, 167184.10.1007/s00231-022-03224-zCrossRefGoogle Scholar
Tantos, C., Varoutis, S. & Day, Ch 2020 Effect on the internal degree of freedom of the gas molecules on the heat and mass transfer in long circular capillaries. Microfluid Nanofluid 24, 95.10.1007/s10404-020-02400-zCrossRefGoogle Scholar
Tison, S. & A 1993 Experimental data and theoretical modeling of gas flows through metal capillary leaks. Vacuum 44 (11), 11711175.10.1016/0042-207X(93)90342-8CrossRefGoogle Scholar
Titarev, V.A. & Shakhov, E.M. 2012 Poiseuillle flow and thermal creep in a capillary tube on the basis of kinetic r-model. Fluid Dyn. 47 (5), 661672.10.1134/S0015462812050146CrossRefGoogle Scholar
Wangkui, L., Dixin, Z., Qiang, L., Shiliang, L., Detian, L. & Yang, M. 1996 A gas flow standard apparatus. Vacuum 47 (6-8), 519522.10.1016/0042-207X(96)00148-0CrossRefGoogle Scholar
Wu, L., Zhang, J., Liu, H., Zhang, Y. & Reese, J.M. 2017 A fast iterative scheme for the linearized boltzmann equation. J. Comput. Phys. 338, 431451.10.1016/j.jcp.2017.03.002CrossRefGoogle Scholar
Supplementary material: File

Grigorov et al. supplementary material

Grigorov et al. supplementary material
Download Grigorov et al. supplementary material(File)
File 7 MB