Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-25T22:52:38.405Z Has data issue: false hasContentIssue false

Measurements of pressure and velocity fluctuations in a family of turbulent separation bubbles

Published online by Cambridge University Press:  07 September 2020

Arnaud Le Floc'h
Affiliation:
Laboratoire de thermo-fluide pour le transport, École de technologie supérieure, Montréal, QuébecH3C 1K3, Canada
Julien Weiss*
Affiliation:
Laboratoire de thermo-fluide pour le transport, École de technologie supérieure, Montréal, QuébecH3C 1K3, Canada Institute of Aeronautics and Astronautics, Technical University of Berlin, 10587Berlin, Germany
Abdelouahab Mohammed-Taifour
Affiliation:
Laboratoire de thermo-fluide pour le transport, École de technologie supérieure, Montréal, QuébecH3C 1K3, Canada
Louis Dufresne
Affiliation:
Laboratoire de thermo-fluide pour le transport, École de technologie supérieure, Montréal, QuébecH3C 1K3, Canada
*
Email address for correspondence: julien.weiss@tu-berlin.de

Abstract

Measurements of wall-pressure and velocity fluctuations are performed in a family of three incompressible, pressure-induced, turbulent separation bubbles (TSBs) of varying sizes, with an emphasis on the energetic low and medium frequencies. In all three cases the streamwise distribution of wall-pressure fluctuations shows a bi-modal character, with a first local maximum close to the position of maximum adverse pressure gradient and a second local maximum at the very end of the region of intermittent back flow. The first maximum is shown to be caused by the superposition of two separate phenomena occurring at approximately the same streamwise position: first, the pressure signature of a low-frequency contraction and expansion (breathing) of the TSBs, whose amplitude is shown to increase with the size of the separation bubble, and second, the effect of the adverse pressure gradient on the turbulent structures responsible for the pressure fluctuations in the attached boundary layer. The second maximum of the wall-pressure fluctuation coefficient also increases with the size of the TSB and is associated with the convection of large structures within the shear layer. Possible scaling laws are examined to show that both the local maximum Reynolds shear stress ${-\rho \overline {u'v'}_{max}}$ and the local maximum wall-normal stress ${\rho \overline {v'v'}_{max}}$ are adequate to scale the pressure fluctuations along the TSBs, with a better match when low frequencies are removed. Furthermore, a comparison with existing data from the literature illustrates the effects of Reynolds number and TSB size on the wall-pressure and velocity fluctuations. Finally, measurements in the spanwise direction demonstrate that, although corner effects strongly distort the average flow, the scaling of wall-pressure fluctuations with the turbulent stresses remains relatively unaffected. The present results provide new insights into the unsteady character of pressure-induced turbulent separation bubbles and their associated wall-pressure fluctuations.

Type
JFM Papers
Copyright
© The Author(s), 2020. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Abe, H. 2017 Reynolds-number dependence of wall-pressure fluctuations in a pressure-induced turbulent separation bubble. J. Fluid Mech. 833, 563598.CrossRefGoogle Scholar
Alving, A. E. & Fernholz, H. H. 1996 Turbulence measurements around a mild separation bubble and downstream of reattachment. J. Fluid Mech. 322, 297328.CrossRefGoogle Scholar
Angele, K. P. & Muhammad-Klingmann, B. 2006 PIV measurements in a weakly separating and reattaching turbulent boundary layer. Eur. J. Mech. B/Fluids 25 (2), 204222.CrossRefGoogle Scholar
Bendat, J. S. & Piersol, A. G. 2010 Random Data: Analysis and Measurement Procedures, 3rd edn. John Wiley & Sons.CrossRefGoogle Scholar
Bouriga, M., Taher, R., Morency, F. & Weiss, J. 2015 Numerical investigation of secondary flows in a constant-width wind-tunnel contraction. Aeronaut. J. 119 (1215), 613630.CrossRefGoogle Scholar
Bradshaw, P. 1987 Turbulent secondary flows. Annu. Rev. Fluid Mech. 19 (1), 5374.CrossRefGoogle Scholar
Buice, C. U. 1997 Experimental investigation of flow through an asymmetric plane diffuser. PhD thesis, Stanford University.Google Scholar
Buice, C. U. & Eaton, J. K. 1995 Experimental investigation of flow through an asymmetric plane diffuser. In CTR Annu. Res. Briefs 1995, pp. 117120. Center for Turbulence Research.Google Scholar
Bull, M. K. 1996 Wall-pressure fluctuations beneath turbulent boundary layers: some reflections on forty years of research. J. Sound Vib. 190 (3), 299315.CrossRefGoogle Scholar
Cheng, W., Pullin, D. I. & Samtaney, R. 2015 Large-eddy simulation of separation and reattachment of a flat plate turbulent boundary layer. J. Fluid Mech. 785, 78108.CrossRefGoogle Scholar
Ciampoli, F. & Hancock, P. E. 2006 Effects of flow width in nominally two-dimensional turbulent separated flows. Exp. Fluids 40 (2), 196202.Google Scholar
Coleman, G. N., Rumsey, C. L. & Spalart, P. R. 2018 Numerical study of turbulent separation bubbles with varying pressure gradient and Reynolds number. J. Fluid Mech. 847, 2870.CrossRefGoogle ScholarPubMed
Delery, J. M. 1985 Shock wave/turbulent boundary layer interaction and its control. Prog. Aerosp. Sci. 22 (4), 209280.CrossRefGoogle Scholar
Dengel, P. & Fernholz, H. H. 1990 An experimental investigation of an incompressible turbulent boundary layer in the vicinity of separation. J. Fluid Mech. 212, 615636.CrossRefGoogle Scholar
Dianat, M. & Castro, I. P. 1989 Measurements in separating boundary layers. AIAA J. 27 (6), 719724.CrossRefGoogle Scholar
Dianat, M. & Castro, I. P. 1991 Turbulence in a separated boundary layer. J. Fluid Mech. 226, 91123.CrossRefGoogle Scholar
Driver, D. 1991 Reynolds shear stress measurements in a separated boundary layer flow. AIAA Paper 1991-1787.Google Scholar
Fang, X. & Tachie, M. F. 2019 On the unsteady characteristics of turbulent separations over a forward–backward-facing step. J. Fluid Mech. 863, 9941030.CrossRefGoogle Scholar
Fernholz, H. H. & Finley, P. J. 1996 The incompressible zero-pressure-gradient turbulent boundary layer: an assessment of the data. Prog. Aerosp. Sci. 32 (4), 245311.CrossRefGoogle Scholar
Ji, M. & Wang, M. 2012 Surface pressure fluctuations on steps immersed in turbulent boundary layers. J. Fluid Mech. 712, 471504.CrossRefGoogle Scholar
Kaltenbach, H.-J., Fatica, M., Mittal, R., Lund, T. S. & Moin, P. 1999 Study of flow in a planar asymmetric diffuser using large-eddy simulation. J. Fluid Mech. 390, 151185.CrossRefGoogle Scholar
Le Floc'h, A., Mohammed-Taifour, A., Dufresne, L. & Weiss, J. 2018 Spanwise aspects of unsteadiness in a pressure-induced turbulent separation bubble. AIAA Paper 2018-3538.Google Scholar
Le Floc'h, A., Mohammed-Taifour, A., Dufresne, L. & Weiss, J. 2019 Investigation of wall-pressure fluctuations in three pressure-induced turbulent separation bubbles. AIAA Paper 2019-3650.Google Scholar
Le Floc'h, A., Mohammed-Taifour, A. & Weiss, J. 2017 Investigation of the low-frequency breathing motion in two turbulent separation bubbles. AIAA Paper 2017-3970.Google Scholar
Ma, A., Gibeau, B. & Ghaemi, S. 2020 Time-resolved topology of turbulent boundary layer separation over the trailing edge of an airfoil. J. Fluid Mech. 891, A1.CrossRefGoogle Scholar
Menter, F. R., Garbaruk, A. V. & Egorov, Y. 2012 Explicit algebraic Reynolds stress models for anisotropic wall-bounded flows. Prog. Flight Phys. 3, 89104.CrossRefGoogle Scholar
Mohammed-Taifour, A., Dufresne, L. & Weiss, J. 2019 Numerical simulation of a large pressure-induced turbulent separation bubble. In Proceedings of the 27th Canadian Congress of Applied Mechanics. Université de Sherbrooke, QC, Canada.Google Scholar
Mohammed-Taifour, A., Schwaab, Q., Pioton, J. & Weiss, J. 2015 A new wind tunnel for the study of pressure-induced separating and reattaching flows. Aeronaut. J. 119 (1211), 91108.CrossRefGoogle Scholar
Mohammed-Taifour, A. & Weiss, J. 2016 Unsteadiness in a large turbulent separation bubble. J. Fluid Mech. 799, 383412.CrossRefGoogle Scholar
Mokhtari, S. & Bradshaw, P. 1983 Longitudinal vortices in wind tunnel wall boundary layers. Aeronaut. J. 87 (866), 233236.Google Scholar
Na, Y. & Moin, P. 1998 a Direct numerical simulation of a separated turbulent boundary layer. J. Fluid Mech. 374, 379405.CrossRefGoogle Scholar
Na, Y. & Moin, P. 1998 b The structure of wall-pressure fluctuations in turbulent boundary layers with adverse pressure gradient and separation. J. Fluid Mech. 377, 347373.CrossRefGoogle Scholar
Obi, S., Aoki, K. & Masuda, S. 1993 Experimental and computational study of turbulent separating flow in an asymmetric plane diffuser. In Ninth Symposium on Turbulent Shear Flows, Kyoto, Japan, 16–18 August 1993.Google Scholar
Patrick, W. P. 1987 Flowfield measurements in a separated and reattached flat plate turbulent boundary layer. Tech. Rep. NASA Contractor Report 4052. National Aeronautics and Space Administration.Google Scholar
Pearson, D. S., Goulart, P. J. & Ganapathisubramani, B. 2013 Turbulent separation upstream of a forward-facing step. J. Fluid Mech. 724, 284304.CrossRefGoogle Scholar
Perry, A. E. & Fairlie, B. D. 1975 A study of turbulent boundary-layer separation and reattachment. J. Fluid Mech. 69 (4), 657672.CrossRefGoogle Scholar
Raiesi, H., Piomelli, U. & Pollard, A. 2011 Evaluation of turbulence models using direct numerical and large-eddy simulation data. J. Fluids Engng 133 (2), 021203.CrossRefGoogle Scholar
Rajaee, M., Karlsson, S. K. F. & Sirovich, L. 1994 Low-dimensional description of free-shear-flow coherent structures and their dynamical behaviour. J. Fluid Mech. 258, 129.CrossRefGoogle Scholar
Schlichting, H. 1968 Boundary Layer Theory, 6th edn. McGraw-Hill.Google Scholar
Schwaab, Q. & Weiss, J. 2015 Evaluation of a thermal-tuft probe for turbulent separating and reattaching flows. Trans. ASME: J. Fluids Engng 137, 011401.Google Scholar
Simmons, D., Thomas, F. O. & Corke, T. C. 2019 Smooth body flow separation experiments and their surface flow topology characterization. AIAA Paper 2019-3085.Google Scholar
Simpson, R. L. 1989 Turbulent boundary-layer separation. Annu. Rev. Fluid Mech. 21, 205234.CrossRefGoogle Scholar
Simpson, R. L., Ghodbane, M & McGrath, B. E. 1987 Surface pressure fluctuations in a separating turbulent boundary layer. J. Fluid Mech. 177, 167186.Google Scholar
Skote, M. & Henningson, D. S. 2002 Direct numerical simulation of a separated turbulent boundary layer. J. Fluid Mech. 471, 107136.CrossRefGoogle Scholar
Spalart, P. R. & Coleman, G. N. 1997 Numerical study of a separation bubble with heat transfer. Eur. J. Mech. B/Fluids 16 (2), 169189.Google Scholar
Weiss, J. 2019 A tutorial on the proper orthogonal decomposition. AIAA Paper 2019-3333.Google Scholar
Weiss, J., Mohammed-Taifour, A. & Schwaab, Q. 2015 Unsteady behavior of a pressure-induced turbulent separation bubble. AIAA J. 53 (9), 26342645.CrossRefGoogle Scholar
Weiss, J., Schwaab, Q., Boucetta, Y., Giani, A., Guigue, C., Combette, P. & Charlot, B. 2017 Simulation and testing of a MEMS calorimetric shear-stress sensor. Sensors Actuators 253, 210217.CrossRefGoogle Scholar
Winant, C. D. & Browand, F. K. 1974 Vortex pairing: the mechanism of turbulent mixing-layer growth at moderate Reynolds number. J. Fluid Mech. 63 (02), 237255.CrossRefGoogle Scholar
Wu, W., Meneveau, C. & Mittal, R. 2020 Spatio-temporal dynamics of turbulent separation bubbles. J. Fluid Mech. 883, A45.CrossRefGoogle Scholar
Wu, W. & Piomelli, U. 2018 Effects of surface roughness on a separating turbulent boundary layer. J. Fluid Mech. 841, 552580.CrossRefGoogle Scholar