Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-27T16:25:41.584Z Has data issue: false hasContentIssue false

Material stability and instability in non-local continuum models for dense granular materials

Published online by Cambridge University Press:  28 May 2019

Shihong Li
Affiliation:
School of Engineering, Brown University, Providence, RI 02912, USA
David L. Henann*
Affiliation:
School of Engineering, Brown University, Providence, RI 02912, USA
*
Email address for correspondence: david_henann@brown.edu

Abstract

A class of common and successful continuum models for steady, dense granular flows is based on the $\unicode[STIX]{x1D707}(I)$ model for viscoplastic grain-inertial rheology. Recent work has shown that under certain conditions, $\unicode[STIX]{x1D707}(I)$-based models display a linear instability in which short-wavelength perturbations grow at an unbounded rate – i.e. a Hadamard instability. This observation indicates that $\unicode[STIX]{x1D707}(I)$ models will predict strain localization arising due to material instability in dense granular materials; however, it also raises concerns regarding the robustness of numerical solutions obtained using these models. Several approaches to regularizing this instability have been suggested in the literature. Among these, it has been shown that the inclusion of higher-order velocity gradients into the constitutive equations can suppress the Hadamard instability, while not precluding the modelling of strain localization into diffuse shear bands. In our recent work (Henann & Kamrin, Proc. Natl Acad. Sci. USA, vol. 110, 2013, pp. 6730–6735), we have proposed a non-local model – called the non-local granular fluidity (NGF) model – which also involves higher-order flow gradients and has been shown to quantitatively describe a wide variety of steady, dense flows. In this work, we show that the NGF model also successfully regularizes the Hadamard instability of the $\unicode[STIX]{x1D707}(I)$ model. We further apply the NGF model to the problem of strain localization in quasi-static plane-strain compression using nonlinear finite-element simulations in order to demonstrate that the model is capable of describing diffuse strain localization in a mesh-independent manner. Finally, we consider the linear stability of an alternative gradient–viscoplastic model (Bouzid et al., Phys. Rev. Lett., vol. 111, 2013, 238301) and show that the inclusion of higher-order gradients does not guarantee the suppression of the Hadamard instability.

Type
JFM Papers
Copyright
© 2019 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abaqus 2017 Reference Manuals. Dassault Systèmes Simulia Corp.Google Scholar
Al Hattamleh, O., Muhunthan, B. & Zbib, H. M. 2004 Gradient plasticity modelling of strain localization in granular materials. Intl J. Numer. Anal. Meth. Geomech. 28, 465481.Google Scholar
Anand, L. & Gu, C. 2000 Granular materials: constitutive equations and strain localization. J. Mech. Phys. Solids 48, 17011733.Google Scholar
Anand, L., Kim, K. H. & Shawki, T. G. 1987 Onset of shear localization in viscoplastic solids. J. Mech. Phys. Solids 35, 407429.Google Scholar
Aranson, I. S. & Tsimring, L. S. 2002 Continuum theory of partially fluidized granular flows. Phys. Rev. E 65, 061303.Google Scholar
Barker, T. & Gray, J. M. N. T. 2017 Partial regularisation of the incompressible 𝜇(I)-rheology for granular flow. J. Fluid Mech. 828, 532.Google Scholar
Barker, T., Schaeffer, D. G., Bohorquez, P. & Gray, J. M. N. T. 2015 Well-posed and ill-posed behaviour of the 𝜇(I)-rheology for granular flow. J. Fluid Mech. 779, 794818.Google Scholar
Barker, T., Schaeffer, D. G., Shearer, M. & Gray, J. M. N. T. 2017 Well-posed continuum equations for granular flow with compressibility and 𝜇(I)-rheology. Proc. R. Soc. Lond. A 473, 20160846.Google Scholar
Bhateja, A. & Khakhar, D. V. 2018 Rheology of dense granular flows in two dimensions: comparison of fully two-dimensional flows to unidirectional shear flow. Phys. Rev. Fluids 3, 062301(R).Google Scholar
Bigoni, D. 2012 Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press.Google Scholar
Bocquet, L., Colin, A. & Ajdari, A. 2009 Kinetic theory of plastic flow in soft glassy materials. Phys. Rev. Lett. 103, 036001.Google Scholar
de Borst, R. & Mühlhaus, H.-B. 1992 Gradient-dependent plasticity: formulation and algorithmic aspects. Intl J. Numer. Meth. Engng 35, 521539.Google Scholar
Bouzid, M., Izzet, A., Trulsson, M., Clément, E., Claudin, P. & Andreotti, B. 2015a Non-local rheology in dense granular flows. Eur. Phys. J. E 38, 125.Google Scholar
Bouzid, M., Trulsson, M., Claudin, P., Clément, E. & Andreotti, B. 2013 Nonlocal rheology of granular flows across yield conditions. Phys. Rev. Lett. 111, 238301.Google Scholar
Bouzid, M., Trulsson, M., Claudin, P., Clément, E. & Andreotti, B. 2015b Microrheology to probe non-local effects in dense granular flows. Europhys. Lett. 109, 24002.Google Scholar
Browder, F. E. 1961 On the spectral theory of elliptic differential operators. I. Math. Ann. 142, 22130.Google Scholar
da Cruz, F., Emam, S., Prochnow, M., Roux, J. & Chevoir, F. 2005 Rheophysics of dense granular materials: discrete simulation of plane shear flows. Phys. Rev. E 72, 021309.Google Scholar
Desrues, J. & Viggiani, G. 2004 Strain localization in sand: an overview of the experimental results obtained in Grenoble using stereophotogrammetry. Intl J. Numer. Anal. Meth. Geomech. 28, 279321.Google Scholar
Dunatunga, S. & Kamrin, K. 2015 Continuum modelling and simulation of granular flows through their many phases. J. Fluid Mech. 779, 483513.Google Scholar
Dunatunga, S. & Kamrin, K. 2017 Continuum modeling of projectile impact and penetration in dry granular media. J. Mech. Phys. Solids 100, 4560.Google Scholar
Engelen, R. A. B., Geers, M. G. D. & Baaijens, F. P. T. 2003 Nonlocal implicit gradient enhanced elasto-plasticity for the modeling of softening behavior. Intl J. Plasticity 19, 403433.Google Scholar
Fenistein, D. & van Hecke, M. 2003 Wide shear zones in granular bulk flow. Nature 425, 256.Google Scholar
Gao, Z. & Zhao, J. 2013 Strain localization and fabric evolution in sand. Intl J. Solids Struct. 50, 36343648.Google Scholar
Goddard, J. D. 2003 Material instability in complex fluids. Annu. Rev. Fluid Mech. 35, 113133.Google Scholar
Goddard, J. D. & Alam, M. 1999 Shear-flow and material instabilities in particulate suspensions and granular media. Particul. Sci. Technol. 17, 6996.Google Scholar
Goddard, J. D. & Lee, J. 2017 On the stability of the 𝜇(I) rheology for granular flow. J. Fluid Mech. 833, 302331.Google Scholar
Goddard, J. D. & Lee, J. 2018 Regularization by compressibility of the 𝜇(I) model of dense granular flow. Phys. Fluids 30, 073302.Google Scholar
Goyon, J., Colin, A., Ovarlez, G., Ajdari, A. & Bocquet, L. 2008 Spatial cooperativity in soft glassy flows. Nature 454 (7200), 8487.Google Scholar
Han, C. & Drescher, A. 1993 Shear bands in biaxial tests on dry coarse sand. Soils Found. 33, 118132.Google Scholar
Henann, D. L. & Kamrin, K. 2013 A predictive, size-dependent continuum model for dense granular flows. Proc. Natl Acad. Sci. USA 110, 67306735.Google Scholar
Henann, D. L. & Kamrin, K. 2014a Continuum modeling of secondary rheology in dense granular materials. Phys. Rev. Lett. 113, 178001.Google Scholar
Henann, D. L. & Kamrin, K. 2014b Continuum thermomechanics of the nonlocal granular rheology. Intl J. Plasticity 60, 145162.Google Scholar
Henann, D. L. & Kamrin, K. 2016 A finite element implementation of the nonlocal granular rheology. Intl J. Numer. Meth. Engng 108, 273302.Google Scholar
Heyman, J., Delannay, R., Tabuteau, H. & Valance, A. 2017 Compressibility regularizes the 𝜇(I)-rheology for dense granular flows. J. Fluid Mech. 830, 553568.Google Scholar
Hill, R. 1962 Acceleration waves in solids. J. Mech. Phys. Solids 10, 116.Google Scholar
Houdoux, D., Nguyen, T. B., Amon, A. & Crassous, J. 2018 Plastic flow and localization in an amorphous material: experimental interpretation of the fluidity. Phys. Rev. E 98, 022905.Google Scholar
Jenkins, J. T. 2006 Dense shearing flows of inelastic disks. Phys. Fluids 18, 103307.Google Scholar
Jop, P., Forterre, Y. & Pouliquen, O. 2005 Crucial role of side walls for granular surface flows: consequences for the rheology. J. Fluid Mech. 541, 2150.Google Scholar
Jop, P., Forterre, Y. & Pouliquen, O. 2006 A constitutive law for dense granular flows. Nature 441, 727730.Google Scholar
Jop, P., Forterre, Y. & Pouliquen, O. 2007 Initiation of granular surface flows in a narrow channel. Phys. Fluids 19, 088102.Google Scholar
Kamrin, K. 2010 Nonlinear elasto-plastic model for dense granular flow. Intl J. Plasticity 26, 167188.Google Scholar
Kamrin, K. & Henann, D. L. 2015 Nonlocal modeling of granular flows down inclines. Soft Matt. 11, 179185.Google Scholar
Kamrin, K. & Koval, G. 2012 Nonlocal constitutive relation for steady granular flow. Phys. Rev. Lett. 108, 178301.Google Scholar
Kharel, P. & Rognon, P. 2017 Partial jamming and non-locality in dense granular flows. Eur. Phys. J. Web Conf. 140, 03060.Google Scholar
Komatsu, T. S., Inagaki, S., Nakagawa, N. & Nasuno, S. 2001 Creep motion in a granular pile exhibiting steady surface flow. Phys. Rev. Lett. 86, 17571760.Google Scholar
Koval, G., Roux, J.-N., Corfdir, A. & Chevoir, F. 2009 Annular shear of cohesionless granular materials: from the inertial to quasistatic regime. Phys. Rev. E 79, 021306.Google Scholar
Krishnaraj, K. P. & Nott, P. R. 2016 A dilation-driven vortex flow in sheared granular materials explains a rheometric anomaly. Nat. Commun. 7, 10630.Google Scholar
Lagrée, P.-Y., Staron, L. & Popinet, S. 2011 The granular column collapse as a continuum: validity of a two-dimensional Navier–Stokes model with a 𝜇(I)-rheology. J. Fluid Mech. 686, 378408.Google Scholar
Le Bouil, A., Amon, A., McNamara, S. & Crassous, J. 2014 Emergence of cooperativity in plasticity of soft glassy materials. Phys. Rev. Lett. 112, 246001.Google Scholar
Liu, D. & Henann, D. L. 2017 Non-local continuum modelling of steady, dense granular heap flows. J. Fluid Mech. 831, 212227.Google Scholar
Liu, D. & Henann, D. L. 2018 Size-dependence of the flow threshold in dense granular materials. Soft Matt. 14, 52945305.Google Scholar
Lun, C. K. K., Savage, S. B., Jeffrey, D. J. & Chepurniy, N. 1984 Kinetic theories for granular flow: inelastic particles in Couette flow and slightly inelastic particles in a general flowfield. J. Fluid Mech. 140, 223256.Google Scholar
MiDi, G. D. R. 2004 On dense granular flows. Eur. Phys. J. E 14, 341365.Google Scholar
Mohan, L. S., Rao, K. K. & Nott, P. R. 2002 A frictional Cosserat model for the slow shearing of granular materials. J. Fluid Mech. 457, 377409.Google Scholar
Needleman, A. 1988 Material rate dependence and mesh sensitivity in localization problems. Comput. Meth. Appl. Mech. Engng 45, 6985.Google Scholar
Needleman, A. & Tvergaard, V. 1992 Analyses of plastic flow localization in metals. Appl. Mech. Rev. 45, S3S18.Google Scholar
Nemat-Nasser, S. 2004 Plasticity: A Treatise on Finite Deformation of Heterogeneous Inelastic Materials. Cambridge University Press.Google Scholar
Pouliquen, O. & Forterre, Y. 2009 A non-local rheology for dense granular flows. Phil. Trans. R. Soc. A 367, 50915107.Google Scholar
Rechenmacher, A. L. 2006 Grain-scale processes governing shear band initiation and evolution in sands. J. Mech. Phys. Solids 54, 2245.Google Scholar
Rudnicki, J. W. & Rice, J. R. 1975 Conditions for the localization of deformation in pressure-sensitive dilatant materials. J. Mech. Phys. Solids 23, 371394.Google Scholar
Rycroft, C. H., Kamrin, K. & Bazant, M. Z. 2009 Assessing continuum hypotheses in simulation of granular flow. J. Mech. Phys. Solids 57, 828839.Google Scholar
Savage, S. B. 1998 Analyses of slow high-concentration flows of granular materials. J. Fluid Mech. 377, 126.Google Scholar
Schofield, A. & Wroth, C. 1968 Critical State Soil Mechanics. McGraw-Hill.Google Scholar
Staron, L., Lagrée, P.-Y. & Popinet, P. 2012 The granular silo as a continuum plastic flow: the hour-glass vs the clepsydra. Phys. Fluids 24, 103301.Google Scholar
Staron, L., Lagrée, P.-Y. & Popinet, S. 2014 Continuum simulation of the discharge of the granular silo: a validation test for the 𝜇(I) visco-plastic flow law. Eur. Phys. J. E Soft Matt. 37, 5.Google Scholar
Sun, J. & Sundaresan, S. 2011 A constitutive model with microstructure evolution for flow of rate-independent granular materials. J. Fluid Mech. 682, 590616.Google Scholar
Tang, Z., Brzinski, T. A., Shearer, M. & Daniels, K. E. 2018 Nonlocal rheology of dense granular flow in annular shear experiments. Soft Matt. 14, 30403048.Google Scholar
Thomas, T. Y. 1961 Plastic Flow and Fracture in Solids. Academic Press.Google Scholar
Vardoulakis, I. & Aifantis, E. C. 1991 A gradient flow theory of plasticity for granular media. Acta Mechanica 87, 197217.Google Scholar
Weinhart, T., Hartkamp, R., Thornton, A. R. & Luding, S. 2013 Coarse-grained local and objective continuum description of three-dimensional granular flows down an inclined surface. Phys. Fluids 25, 070605.Google Scholar
Zhang, Q. & Kamrin, K. 2017 Microscopic description of the granular fluidity field in nonlocal flow modeling. Phys. Rev. Lett. 118, 058001.Google Scholar