Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-11T22:06:45.848Z Has data issue: false hasContentIssue false

Magnetofluidic mixing of a ferrofluid droplet under the influence of a time-dependent external field

Published online by Cambridge University Press:  23 April 2021

Sudip Shyam
Affiliation:
Microfluidics and Microscale Transport Processes Laboratory, Department of Mechanical Engineering, Indian Institute of Technology Guwahati, Assam781039, India
Pranab Kumar Mondal*
Affiliation:
Microfluidics and Microscale Transport Processes Laboratory, Department of Mechanical Engineering, Indian Institute of Technology Guwahati, Assam781039, India
Balkrishna Mehta
Affiliation:
Department of Mechanical Engineering, Indian Institute of Technology Bhilai, Raipur492015, India
*
 Email address for correspondence: mail2pranab@gmail.com, pranabm@iitg.ac.in

Abstract

We report experimental investigations on the mixing of a ferrofluid droplet with a non-magnetic miscible fluid in the presence of a time-dependent magnetic field on an open surface microfluidic platform. The bright-field visualization technique, in combination with micro-particle image velocimetry analysis, is carried out to explore the internal hydrodynamics of the ferrofluid droplet. Also, using the laser-induced fluorescence technique, we quantify the mass transfer occurring between the two droplets, which in effect, determines the underlying mixing performance under the modulation of the frequency of the applied magnetic field. We show that the magnetic nanoparticles exhibit complex spatio-temporal movements inside the ferrofluid droplet domain in a transient magnetic forcing environment, which, in turn, promotes the mixing efficiency in the convective mixing regime. Our analysis establishes that the movement of magnetic nanoparticles in the presence of the time-periodic field strengthens the flow instability, which initiates an augmented mixing in the present scenario. By performing numerical simulations, we also review the onset of instability phenomena, mainly stemming from the susceptibility mismatch between the magnetic and non-magnetic fluids. Inferences of the present analysis, which focuses on the simple, wireless, robust and low-cost open surface micromixing mechanism, will provide a potential solution for rapid droplet mixing without requiring a pH level or ion concentration dependency of the fluids.

Type
JFM Papers
Copyright
© The Author(s), 2021. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Afkhami, S., Renardy, Y., Renardy, M., Riffle, J.S. & St Pierre, T. 2008 Field-induced motion of ferrofluid droplets through immiscible viscous media. J. Fluid Mech. 610, 363380.CrossRefGoogle Scholar
Afkhami, S., Tyler, A.J., Renardy, Y., Renardy, M., St Pierre, T.G., Woodward, R.C. & Riffle, J.S. 2010 Deformation of a hydrophobic ferrofluid droplet suspended in a viscous medium under uniform magnetic fields. J. Fluid Mech. 663, 358384.CrossRefGoogle Scholar
Behera, N., Mandal, S. & Chakraborty, S. 2019 Electrohydrodynamic settling of drop in uniform electric field: beyond Stokes flow regime. J. Fluid Mech. 881, 498523.CrossRefGoogle Scholar
Berry, S.M., Alarid, E.T. & Beebe, D.J. 2011 One-step purification of nucleic acid for gene expression analysis via Immiscible Filtration Assisted by Surface Tension (IFAST). Lab on a Chip 11 (10), 17471753.CrossRefGoogle Scholar
Biswal, S.L. & Gast, A.P. 2004 Micromixing with linked chains of paramagnetic particles. Anal. Chem. 76 (21), 64486455.CrossRefGoogle ScholarPubMed
Bogojevic, D., Chamberlain, M.D., Barbulovic-Nad, I. & Wheeler, A.R. 2012 A digital microfluidic method for multiplexed cell-based apoptosis assays. Lab on a Chip 12 (3), 627634.CrossRefGoogle ScholarPubMed
Brinkman, H.C. 1952 The viscosity of concentrated suspensions and solutions. J. Chem. Phys. 20 (4), 571571.CrossRefGoogle Scholar
Franke, T., Schmid, L., Weitz, D.A. & Wixforth, A. 2009 Magneto-mechanical mixing and manipulation of picoliter volumes in vesicles. Lab on a Chip 9 (19), 28312835.CrossRefGoogle ScholarPubMed
Ganguly, R., Sen, S. & Puri, I.K. 2004 Heat transfer augmentation using a magnetic fluid under the influence of a line dipole. J. Magn. Magn. Mater. 271 (1), 6373.CrossRefGoogle Scholar
Gao, Y., Beerens, J., van Reenen, A., Hulsen, M.A., de Jong, A.M.D., Prins, M.W.J. & den Toonder, J.M.J. 2015 Strong vortical flows generated by the collective motion of magnetic particle chains rotating in a fluid cell. Lab on a Chip 15 (1), 351360.CrossRefGoogle Scholar
Grassia, P. 2019 Motion of an oil droplet through a capillary with charged surfaces. J. Fluid Mech. 866, 721758.CrossRefGoogle Scholar
Greenspan, H.P. 1978 On the motion of a small viscous droplet that wets a surface. J. Fluid Mech. 84 (01), 125143.CrossRefGoogle Scholar
Griffiths, D.J. 2017 Introduction to Electrodynamics. Introduction to Electrodynamics. Cambridge University Press.CrossRefGoogle Scholar
de Groot, T.E., Veserat, K.S., Berthier, E., Beebe, D.J. & Theberge, A.B. 2016 Surface-tension driven open microfluidic platform for hanging droplet culture. Lab on a Chip 16 (2), 334344.CrossRefGoogle ScholarPubMed
Hejazian, M., Phan, D.-T. & Nguyen, N.-T. 2016 Mass transport improvement in microscale using diluted ferrofluid and a non-uniform magnetic field. RSC Adv. 6 (67), 6243962444.CrossRefGoogle Scholar
Huang, G., Li, M., Yang, Q., Li, Y., Li, H., Yang, H. & Xu, F. 2017 Magnetically actuated droplet manipulation and its potential biomedical applications. ACS Appl. Mater. Interfaces 9 (2), 11551166.CrossRefGoogle ScholarPubMed
Kitenbergs, G., Tatulcenkovs, A., Erglis, K., Petrichenko, O., Perzynski, R. & Cebers, A. 2015 Magnetic field driven micro-convection in the Hele-Shaw cell: the Brinkman model and its comparison with experiment. J. Fluid Mech. 774, 170191.CrossRefGoogle Scholar
Kumar, C., Hejazian, M., From, C., Saha, S.C., Sauret, E., Gu, Y. & Nguyen, N.T. 2019 Modeling of mass transfer enhancement in a magnetofluidic micromixer. Phys. Fluids 31 (6), 063603.CrossRefGoogle Scholar
Lee, S.H., van Noort, D., Lee, J.Y., Zhang, B.-T. & Park, T.H. 2009 Effective mixing in a microfluidic chip using magnetic particles. Lab on a Chip 9 (3), 479482.CrossRefGoogle Scholar
Lin, D., Li, P., Lin, J., Shu, B., Wang, W., Zhang, Q., Yang, N., Liu, D. & Xu, B. 2017 Orthogonal screening of anticancer drugs using an open-access microfluidic tissue array system. Anal. Chem. 89 (22), 1197611984.CrossRefGoogle ScholarPubMed
Liu, H., Li, M., Li, Y., Yang, H., Li, A., Lu, T.J., Li, F. & Xu, F. 2018 Magnetic steering of liquid metal mobiles. Soft Matt. 14 (17), 32363245.CrossRefGoogle ScholarPubMed
Long, Z., Shetty, A.M., Solomon, M.J. & Larson, R.G. 2009 Fundamentals of magnet-actuated droplet manipulation on an open hydrophobic surface. Lab on a Chip 9 (11), 15671575.CrossRefGoogle Scholar
Mahendran, V. & Philip, J. 2012 Nanofluid based optical sensor for rapid visual inspection of defects in ferromagnetic materials. Appl. Phys. Lett. 100 (7), 14.CrossRefGoogle Scholar
Martin, J.E., Shea-Rohwer, L. & Solis, K.J. 2009 Strong intrinsic mixing in vortex magnetic fields. Phys. Rev. E 80 (1), 016312.CrossRefGoogle ScholarPubMed
Mary, P., Studer, V. & Tabeling, P. 2008 Microfluidic droplet-based liquid−liquid extraction. Anal. Chem. 80 (8), 26802687.CrossRefGoogle ScholarPubMed
Mendelev, V.S. & Ivanov, A.O. 2004 Ferrofluid aggregation in chains under the influence of a magnetic field. Phys. Rev. E 70 (5), 051502.CrossRefGoogle ScholarPubMed
Meng, J.C. & Colonius, T. 2018 Numerical simulation of the aerobreakup of a water droplet. J. Fluid Mech. 835, 11081135.CrossRefGoogle Scholar
Munaz, A., Kamble, H., Shiddiky, M.J.A. & Nguyen, N.-T. 2017 Magnetofluidic micromixer based on a complex rotating magnetic field. RSC Adv. 7 (83), 5246552474.CrossRefGoogle Scholar
Nguyen, N.-T. 2012 Micro-magnetofluidics: interactions between magnetism and fluid flow on the microscale. Microfluid Nanofluid 12 (1–4), 116.CrossRefGoogle Scholar
Nouri, D., Zabihi-Hesari, A. & Passandideh-Fard, M. 2017 Rapid mixing in micromixers using magnetic field. Sensors Actuators, A: Phys. 255, 7986.CrossRefGoogle Scholar
Odenbach, S. (Ed.). 2002 Ferrofluids, vol. 594. Springer Berlin Heidelberg.CrossRefGoogle ScholarPubMed
Pournaderi, P. & Pishevar, A.R. 2014 The effect of the surface inclination on the hydrodynamics and thermodynamics of leidenfrost droplets. J. Mech. 30 (2), 145151.CrossRefGoogle Scholar
Qiu, M., Afkhami, S., Chen, C.-Y. & Feng, J.J. 2018 Interaction of a pair of ferrofluid drops in a rotating magnetic field. J. Fluid Mech. 846, 121142.CrossRefGoogle Scholar
Rosensweig, R.E. 1984 Ferrohydrodynamics, p. 279. Cambridge University Press.Google Scholar
Rowghanian, P., Meinhart, C.D. & Campàs, O. 2016 Dynamics of ferrofluid drop deformations under spatially uniform magnetic fields. J. Fluid Mech. 802, 245262.CrossRefGoogle Scholar
Roy, T., Sinha, A., Chakraborty, S., Ganguly, R. & Puri, I.K. 2009 Magnetic microsphere-based mixers for microdroplets. Phys. Fluids 21 (2), 027101.CrossRefGoogle Scholar
Saadat, M., Shafii, M.B. & Ghassemi, M. 2020 Numerical investigation on mixing intensification of ferrofluid and deionized water inside a microchannel using magnetic actuation generated by embedded microcoils for lab-on-chip systems. Chem. Engng Process 147, 107727.CrossRefGoogle Scholar
Schneider, C.A., Rasband, W.S. & Eliceiri, K.W. 2012 NIH Image to ImageJ: 25 years of image analysis. Nat. Meth. 9 (7), 671675.CrossRefGoogle ScholarPubMed
Shamsi, M.H., Choi, K., Ng, A.H.C. & Wheeler, A.R. 2014 A digital microfluidic electrochemical immunoassay. Lab on a Chip 14 (3), 547554.CrossRefGoogle ScholarPubMed
Shang, L., Cheng, Y. & Zhao, Y. 2017 Emerging droplet microfluidics. Chem. Rev. 117 (12), 79648040.CrossRefGoogle ScholarPubMed
Shyam, S., Asfer, M., Mehta, B., Mondal, P.K. & Almutairi, Z.A. 2020 a Magnetic field driven actuation of sessile ferrofluid droplets in the presence of a time dependent magnetic field. Colloids Surf. A: Physicochem. Engng Aspects 586, 124116.CrossRefGoogle Scholar
Shyam, S., Mehta, B., Mondal, P.K.P.K. & Wongwises, S. 2019 Investigation into the thermo-hydrodynamics of ferrofluid flow under the influence of constant and alternating magnetic field by InfraRed thermography. Intl J. Heat Mass Transfer 135, 12331247.CrossRefGoogle Scholar
Shyam, S., Mondal, P.K. & Mehta, B. 2020 b Field driven evaporation kinetics of a sessile ferrofluid droplet on a soft substrate. Soft Matt. 16 (28), 66196632.CrossRefGoogle ScholarPubMed
Shyam, S., Yadav, A., Gawade, Y., Mehta, B., Mondal, P.K. & Asfer, M. 2020 c Dynamics of a single isolated ferrofluid plug inside a micro-capillary in the presence of externally applied magnetic field. Exp. Fluids 61 (10), 210.CrossRefGoogle Scholar
Sing, C.E., Schmid, L., Schneider, M.F., Franke, T. & Alexander-Katz, A. 2010 Controlled surface-induced flows from the motion of self-assembled colloidal walkers. Proc. Natl Acad. Sci. 107 (2), 535540.CrossRefGoogle ScholarPubMed
Singh, C., Das, A.K. & Das, P.K. 2018 Levitation of non-magnetizable droplet inside ferrofluid. J. Fluid Mech. 857, 398448.CrossRefGoogle Scholar
Smith, M.K. 1995 Thermocapillary migration of a two-dimensional liquid droplet on a solid surface. J. Fluid Mech. 294, 209230.CrossRefGoogle Scholar
Strek, T. 2008 Finite element simulation of heat transfer in ferrofluid. In Modelling and Simulation. I-Tech Education and Publishing.CrossRefGoogle Scholar
Tam, D., von Arnim, V., Mckinley, G.H. & Hosoi, A.E. 2009 Marangoni convection in droplets on superhydrophobic surfaces. J. Fluid Mech. 624, 101123.CrossRefGoogle Scholar
Thielicke, W. & Stamhuis, E.J. 2014 PIVlab – towards user-friendly, affordable and accurate digital particle image velocimetry in MATLAB. J. Open Res. Softw. 2, e30.CrossRefGoogle Scholar
Tice, J.D., Song, H., Lyon, A.D. & Ismagilov, R.F. 2003 Formation of droplets and mixing in multiphase microfluidics at low values of the Reynolds and the Capillary numbers. Langmuir 19 (22), 91279133.CrossRefGoogle Scholar
Tsai, T.-H., Liou, D.-S., Kuo, L.-S. & Chen, P.-H. 2009 Rapid mixing between ferro-nanofluid and water in a semi-active Y-type micromixer. Sensors Actuators A: Phys. 153 (2), 267273.CrossRefGoogle Scholar
Utami, T., Blackwelder, R.F. & Ueno, T. 1991 A cross-correlation technique for velocity field extraction from particulate visualization. Exp. Fluids 10 (4), 213223.CrossRefGoogle Scholar
Vieu, T. & Walter, C. 2018 Shape and fission instabilities of ferrofluids in non-uniform magnetic fields. J. Fluid Mech. 840, 455497.CrossRefGoogle Scholar
Vilfan, M., Potočnik, A., Kavčič, B., Osterman, N., Poberaj, I., Vilfan, A. & Babič, D. 2010 Self-assembled artificial cilia. Proc. Natl Acad. Sci. 107 (5), 18441847.CrossRefGoogle ScholarPubMed
Wang, Y., Zhe, J., Chung, B.T.F. & Dutta, P. 2008 A rapid magnetic particle driven micromixer. Microfluid Nanofluid 4 (5), 375389.CrossRefGoogle Scholar
Wen, C.-Y.Y., Liang, K.-P.P., Chen, H. & Fu, L.-M.M. 2011 Numerical analysis of a rapid magnetic microfluidic mixer. Electrophoresis 32 (22), 32683276.CrossRefGoogle ScholarPubMed
Wen, C.-Y., Yeh, C.-P., Tsai, C.-H. & Fu, L.-M. 2009 Rapid magnetic microfluidic mixer utilizing AC electromagnetic field. Electrophoresis 30 (24), 41794186.CrossRefGoogle ScholarPubMed
White, A.K., Heyries, K.A., Doolin, C., VanInsberghe, M. & Hansen, C.L. 2013 High-throughput microfluidic single-cell digital polymerase chain reaction. Anal. Chem. 85 (15), 71827190.CrossRefGoogle ScholarPubMed
Xing, S., Harake, R.S. & Pan, T. 2011 Droplet-driven transports on superhydrophobic-patterned surface microfluidics. Lab on a Chip 11 (21), 36423648.CrossRefGoogle ScholarPubMed
Xu, R. 2002 Particle Characterization: Light Scattering Methods (ed. B. Scarlett), vol. 13. Kluwer Academic Publishers.Google Scholar
Zakinyan, A. & Dikansky, Y. 2011 Drops deformation and magnetic permeability of a ferrofluid emulsion. Colloids Surf. A: Physicochem. Engng Aspects 380 (1–3), 314318.CrossRefGoogle Scholar
Zhang, Y. & Nguyen, N.-T. 2017 Magnetic digital microfluidics – a review. Lab on a Chip 17 (6), 9941008.CrossRefGoogle ScholarPubMed
Zhang, Y., Park, S., Liu, K., Tsuan, J., Yang, S. & Wang, T.-H. 2011 A surface topography assisted droplet manipulation platform for biomarker detection and pathogen identification. Lab on a Chip 11 (3), 398406.CrossRefGoogle ScholarPubMed
Zhou, R. & Surendran, A.N. 2020 Study on micromagnets induced local wavy mixing in a microfluidic channel. Appl. Phys. Lett. 117 (13), 132408.CrossRefGoogle Scholar
Zhu, T., Lichlyter, D.J., Haidekker, M.A. & Mao, L. 2011 Analytical model of microfluidic transport of non-magnetic particles in ferrofluids under the influence of a permanent magnet. Microfluid Nanofluid 10 (6), 12331245.CrossRefGoogle Scholar
Zhu, G.-P. & Nguyen, N.-T. 2012 Rapid magnetofluidic mixing in a uniform magnetic field. Lab on a Chip 12 (22), 47724780.CrossRefGoogle Scholar

Shyam et al. supplementary movie 1

See word file for movie caption

Download Shyam et al. supplementary movie 1(Video)
Video 2.9 MB

Shyam et al. supplementary movie 2

See word file for movie caption

Download Shyam et al. supplementary movie 2(Video)
Video 6.3 MB

Shyam et al. supplementary movie 3

See word file for movie caption

Download Shyam et al. supplementary movie 3(Video)
Video 5.6 MB

Shyam et al. supplementary movie 4

See word file for movie caption

Download Shyam et al. supplementary movie 4(Video)
Video 5.7 MB

Shyam et al. supplementary movie 5

See word file for movie caption

Download Shyam et al. supplementary movie 5(Video)
Video 5.2 MB

Shyam et al. supplementary movie 6

See word file for movie caption

Download Shyam et al. supplementary movie 6(Video)
Video 4.2 MB

Shyam et al. supplementary movie 7

See word file for movie caption

Download Shyam et al. supplementary movie 7(Video)
Video 9.9 MB
Supplementary material: PDF

Shyam et al. supplementary material

Supplementary data and figures

Download Shyam et al. supplementary material(PDF)
PDF 872.9 KB
Supplementary material: File

Shyam et al. supplementary material

Captions for movies 1-7

Download Shyam et al. supplementary material(File)
File 12.7 KB