Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-11T05:57:34.772Z Has data issue: false hasContentIssue false

Localized layers of turbulence in stratified horizontally sheared Poiseuille flow

Published online by Cambridge University Press:  19 May 2023

J. Labarbe*
Affiliation:
Aix Marseille Univ., CNRS, Centrale Marseille, IRPHE, 13384 Marseille, France
P. Le Gal
Affiliation:
Aix Marseille Univ., CNRS, Centrale Marseille, IRPHE, 13384 Marseille, France
U. Harlander
Affiliation:
Department of Aerodynamics and Fluid Mechanics, Brandenburg University of Technology, Cottbus-Senftenberg, D-03046 Cottbus, Germany
S. Le Dizès
Affiliation:
Aix Marseille Univ., CNRS, Centrale Marseille, IRPHE, 13384 Marseille, France
B. Favier
Affiliation:
Aix Marseille Univ., CNRS, Centrale Marseille, IRPHE, 13384 Marseille, France
*
Email address for correspondence: jlabarbe@unice.fr

Abstract

This paper presents a numerical analysis of the instability developing in horizontally sheared Poiseuille flow, when stratification extends along the vertical direction. Our study builds on the previous work that originally detected the linear instability of such a configuration, by means of experiments, theoretical analysis and numerical simulations (Le Gal et al., J. Fluid Mech., vol. 907, 2021, R1). We extend this investigation beyond linear theory, investigating nonlinear regimes with direct numerical simulations. We find that the flow loses its vertical homogeneity through a secondary bifurcation, due to harmonic resonances, and describe this symmetry-breaking mechanism in the vicinity of the instability threshold. When departing from this limit, we observe a series of bursting events that break down the flow into disordered motions driven by localized shear instabilities. This intermittent dynamics leads to the coexistence of horizontal localized layers of stratified turbulence surrounded by quiescent regions of meandering waves.

Type
JFM Papers
Copyright
© The Author(s), 2023. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bakas, N.A. & Farrell, B.F. 2009 a Gravity waves in a horizontal shear flow. Part 1. Growth mechanisms in the absence of potential vorticity perturbations. J. Phys. Oceanogr. 39, 481496.CrossRefGoogle Scholar
Bakas, N.A. & Farrell, B.F. 2009 b Gravity waves in a horizontal shear flow. Part 2. Interaction between gravity waves and potential vorticity perturbations. J. Phys. Oceanogr. 39, 497511.CrossRefGoogle Scholar
Basovich, A.Y. & Tsimring, L.S. 1984 Internal waves in a horizontally inhomogeneous flow. J. Fluid Mech. 142, 223249.CrossRefGoogle Scholar
Billant, P. & Chomaz, J.M. 2000 Theoretical analysis of the zigzag instability of a vertical columnar vortex pair in a strongly stratified fluid. J. Fluid Mech. 419, 2963.CrossRefGoogle Scholar
Brethouwer, G., Billant, P., Lindborg, E. & Chomaz, J.M. 2007 Scaling analysis and simulation of strongly stratified turbulent flows. J. Fluid Mech. 585, 343368.CrossRefGoogle Scholar
de Bruyn Kops, S.M. & Riley, J.J. 1998 Direct numerical simulation of laboratory experiments in isotropic turbulence. Phys. Fluids 10 (9), 21252127.CrossRefGoogle Scholar
Burke, J. & Knobloch, E. 2007 Homoclinic snaking: structure and stability. Chaos 17 (3), 037102.CrossRefGoogle ScholarPubMed
Cairns, R.A. 1979 The role of negative energy waves in some instabilities of parallel flows. J. Fluid Mech. 92 (1), 114.CrossRefGoogle Scholar
Carpenter, J.R., Tedford, E.W., Heifetz, E. & Lawrence, G.A. 2011 Instability in stratified shear flow: review of a physical interpretation based on interacting waves. Appl. Mech. Rev. 64 (6), 060801.CrossRefGoogle Scholar
Caulfield, C.P. 1994 Multiple linear instability of layered stratified shear flow. J. Fluid Mech. 258, 255285.CrossRefGoogle Scholar
Caulfield, C.P. 2021 Layering, instabilities, and mixing in turbulent stratified flows. Annu. Rev. Fluid Mech. 53, 113145.CrossRefGoogle Scholar
Davidson, P.A. 2013 Turbulence in Rotating, Stratified and Electrically Conducting Fluids. Cambridge University Press.CrossRefGoogle Scholar
Facchini, G., Favier, B., Le Gal, P., Wang, M. & Le Bars, M. 2018 The linear instability of the stratified plane Couette flow. J. Fluid Mech. 853, 205234.CrossRefGoogle Scholar
Fischer, P.F. 1997 An overlapping Schwarz method for spectral element solution of the incompressible Navier–Stokes equations. J. Comput. Phys. 133 (1), 84101.CrossRefGoogle Scholar
Fischer, P.F., Loth, F., Lee, S.E., Lee, S.W., Smith, D.S. & Bassiouny, H.S. 2007 Simulation of high-Reynolds number vascular flows. Comput. Meth. Appl. Mech. Engng 196 (31–32), 30493060.CrossRefGoogle Scholar
Gage, K.S. & Reid, W.H. 1968 The stability of thermally stratified plane Poiseuille flow. J. Fluid Mech. 33 (1), 2132.CrossRefGoogle Scholar
Gibson, J.F. & Brand, E. 2014 Spanwise-localized solutions of planar shear flows. J. Fluid Mech. 745, 2561.CrossRefGoogle Scholar
Gibson, J.F. & Schneider, T.M. 2016 Homoclinic snaking in plane Couette flow: bending, skewing and finite-size effects. J. Fluid Mech. 794, 530551.CrossRefGoogle Scholar
Howard, L.N. 1961 Note on a paper of John W. Miles. J. Fluid Mech. 10 (4), 509512.CrossRefGoogle Scholar
Le Bars, M. & Le Gal, P. 2007 Experimental analysis of the stratorotational instability in a cylindrical Couette flow. Phys. Rev. Lett. 99, 064502.CrossRefGoogle Scholar
Le Dizès, S. & Billant, P. 2009 Radiative instability in stratified vortices. Phys. Fluids 21 (9), 096602.CrossRefGoogle Scholar
Le Dizès, S. & Riedinger, X. 2010 The strato-rotational instability of Taylor–Couette and Keplerian flows. J. Fluid Mech. 660, 147161.CrossRefGoogle Scholar
Le Gal, P., Harlander, U., Borcia, I.D., Le Dizès, S., Chen, J. & Favier, B. 2021 Instability of vertically stratified horizontal plane Poiseuille flow. J. Fluid Mech. 907, R1.CrossRefGoogle Scholar
Liu, C., Caulfield, C. & Gayme, D. 2022 Structured input–output analysis of stably stratified plane Couette flow. J. Fluid Mech. 948, A10.CrossRefGoogle Scholar
Lucas, D., Caulfield, C.P. & Kerswell, R.R. 2017 Layer formation in horizontally forced stratified turbulence: connecting exact coherent structures to linear instabilities. J. Fluid Mech. 832, 409437.CrossRefGoogle Scholar
Lucas, D., Caulfield, C.P. & Kerswell, R.R. 2019 Layer formation and relaminarisation in plane Couette flow with spanwise stratification. J. Fluid Mech. 868, 97118.CrossRefGoogle Scholar
Miles, J.W. 1961 On the stability of heterogeneous shear flows. J. Fluid Mech. 10 (4), 496508.CrossRefGoogle Scholar
Molemaker, M.J., McWilliams, J.C. & Yavneh, I. 2001 Instability and equilibration of centrifugally stable stratified Taylor–Couette flow. Phys. Rev. Lett. 86, 52705273.CrossRefGoogle ScholarPubMed
Nagata, M. 1990 Three-dimensional finite-amplitude solutions in plane Couette flow: bifurcation from infinity. J. Fluid Mech. 217, 519527.CrossRefGoogle Scholar
Oglethorpe, R.L.F., Caulfield, C.P. & Woods, A.W. 2013 Spontaneous layering in stratified turbulent Taylor–Couette flow. J. Fluid Mech. 721, R3.CrossRefGoogle Scholar
Orszag, S.A. 1971 Accurate solution of the Orr–Sommerfeld stability equation. J. Fluid Mech. 50 (4), 689703.CrossRefGoogle Scholar
Park, J. & Billant, P. 2013 The stably stratified Taylor–Couette flow is always unstable except for solid-body rotation. J. Fluid Mech. 725, 262280.CrossRefGoogle Scholar
Reetz, F., Kreilos, T. & Schneider, T.M. 2019 Exact invariant solution reveals the origin of self-organized oblique turbulent–laminar stripes. Nat. Commun. 10, 2277.CrossRefGoogle ScholarPubMed
Riedinger, X., Le Dizès, S. & Meunier, P. 2011 Radiative instability of the flow around a rotating cylinder in a stratified fluid. J. Fluid Mech. 672, 130146.CrossRefGoogle Scholar
Satomura, T. 1981 An investigation of shear instability in a shallow water. J. Met. Soc. Japan 59 (1), 148167.CrossRefGoogle Scholar
Schlichting, H. 1933 Berechnung der Anfachung kleiner Störungen bei der Plattenströmung. Z. Angew. Math. Mech. 13, 171174.Google Scholar
Schneider, T.M., Gibson, J.F. & Burke, J. 2010 Snakes and ladders: localized solutions of plane Couette flow. Phys. Rev. Lett. 104 (10), 104501.CrossRefGoogle ScholarPubMed
Stewartson, K. & Stuart, J.T. 1971 A non-linear instability theory for a wave system in plane Poiseuille flow. J. Fluid Mech. 48 (3), 529545.CrossRefGoogle Scholar
Stuart, J.T. 1960 On the non-linear mechanics of wave disturbances in stable and unstable parallel flows. Part 1. The basic behaviour in plane Poiseuille flow. J. Fluid Mech. 9 (3), 353370.CrossRefGoogle Scholar
Taylor, J.R., Deusebio, E., Caulfield, C.P. & Kerswell, R.R. 2016 A new method for isolating turbulent states in transitional stratified plane Couette flow. J. Fluid Mech. 808, R1.CrossRefGoogle Scholar
Tollmien, W. 1929 Über die Entstehung der Turbulenz. 1. Mitteilung. Nachr. Ges. Wiss. Göttingen, Math. Phys. Klasse 1928, 2144.Google Scholar
Tuckerman, L.S., Chantry, M. & Barkley, D. 2020 Patterns in wall-bounded shear flows. Annu. Rev. Fluid Mech. 52, 343367.CrossRefGoogle Scholar
Waleffe, F. 1997 On a self-sustaining process in shear flows. Phys. Fluids 9 (4), 883900.CrossRefGoogle Scholar
Yang, A.J., Tedford, E.W., Olsthoorn, J., Lefauve, A. & Lawrence, G.A. 2022 Velocity perturbations and Reynolds stresses in Holmboe instabilities. Phys. Fluids 34 (7), 074110.CrossRefGoogle Scholar
Zhou, Q., Taylor, J.R. & Caulfield, C.P. 2017 a Self-similar mixing in stratified plane Couette flow for varying Prandtl number. J. Fluid Mech. 820, 86120.CrossRefGoogle Scholar
Zhou, Q., Taylor, J.R., Caulfield, C.P. & Linden, P.F. 2017 b Diapycnal mixing in layered stratified plane Couette flow quantified in a tracer-based coordinate. J. Fluid Mech. 823, 198229.CrossRefGoogle Scholar