Hostname: page-component-7857688df4-74lm6 Total loading time: 0 Render date: 2025-11-15T06:05:05.617Z Has data issue: false hasContentIssue false

Leading-edge vortex attachment and vorticity transport enhancement on swept revolving wings

Published online by Cambridge University Press:  14 November 2025

Long Chen
Affiliation:
School of Transportation Science and Engineering, Beihang University, Beijing 100191, PR China
Jianghao Wu
Affiliation:
School of Transportation Science and Engineering, Beihang University, Beijing 100191, PR China
Yanlai Zhang*
Affiliation:
School of Transportation Science and Engineering, Beihang University, Beijing 100191, PR China
*
Corresponding author: Yanlai Zhang, zhangyanlai@buaa.edu.cn

Abstract

A backward swept shape is one of the common features of the wings and fins in animals, which is argued to contribute to leading-edge vortex (LEV) attachment. Early research on delta wings proved that swept edges could enhance the axial flow inside the vortex. However, adopting this explanation to bio-inspired flapping wings and fins yields controversial conclusions, in that whether and how enhanced spanwise flow intensifies the vorticity convection and vortex stretching is still unclear. Here, the flapping wings and fins are simplified into revolving plates with their outboard 50 $\%$ span swept backward in either linear or nonlinear profiles. The local spanwise flow is found to be enhanced by these swept designs and further leads to stronger vorticity convection and vortex stretching, thus contributing to local LEV attachment and postponing bursting. These results further prove that a spanwise gradient of incident velocity is sufficient to trigger a regulation of LEV intensity, and a concomitant gradient of incident angle is not necessary. Moreover, an attached trailing-edge vortex is generated on a swept wing and induces an additional low-pressure region on the dorsal surface. The lift generation of swept wings is inferior to that of the rectangular wing because the extended stable LEV along the span and the additional suction force near the trailing edge are not comparable to the lift loss due to the reduced LEV intensity. Our findings evidence that a swept wing can enhance the spanwise flow and vorticity transport, as well as limit excessive LEV growth.

Information

Type
JFM Papers
Copyright
© The Author(s), 2025. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Adhikari, D.R., Loubimov, G., Kinzel, M.P. & Bhattacharya, S. 2022 Effect of wing sweep on a perching maneuver. Phys. Rev. Fluids 7 (4), 044702.10.1103/PhysRevFluids.7.044702CrossRefGoogle Scholar
Azuma, A. 2012 The Biokinetics of Flying and Swimming. Springer Science & Business Media.Google Scholar
Beem, H.R., Rival, D.E. & Triantafyllou, M.S. 2012 On the stabilization of leading-edge vortices with spanwise flow. Exp. Fluids 52, 511517.10.1007/s00348-011-1241-9CrossRefGoogle Scholar
Birch, J.M. & Dickinson, M.H. 2001 Spanwise flow and the attachment of the leading-edge vortex on insect wings. Nature 412 (6848), 729733.10.1038/35089071CrossRefGoogle ScholarPubMed
Carr, Z.R., Chen, C. & Ringuette, M.J. 2013 Finite-span rotating wings: three-dimensional vortex formation and variations with aspect ratio. Exp. Fluids 54, 126.10.1007/s00348-012-1444-8CrossRefGoogle Scholar
Chen, K.K., Colonius, T. & Taira, K. 2010 The leading-edge vortex and quasisteady vortex shedding on an accelerating plate. Phys. Fluids 22 (3), 033601.10.1063/1.3327282CrossRefGoogle Scholar
Chen, L., Cheng, B. & Wu, J. 2023 a Vorticity dynamics and stability of the leading-edge vortex on revolving wings. Phys. Fluids 35 (9), 091301.10.1063/5.0160346CrossRefGoogle Scholar
Chen, L., Cheng, C., Zhou, C., Zhang, Y. & Wu, J. 2024 Flapping rotary wing: a novel low-Reynolds number layout merging bionic features into micro rotors. Prog. Aerosp. Sci. 146, 100984.10.1016/j.paerosci.2024.100984CrossRefGoogle Scholar
Chen, L., Wang, L., Zhou, C., Wu, J. & Cheng, B. 2022 Effects of Reynolds number on leading-edge vortex formation dynamics and stability in revolving wings. J. Fluid Mech. 931, A13.10.1017/jfm.2021.950CrossRefGoogle Scholar
Chen, L. & Wu, J. 2024 Coexistence of dual wing-wake interaction mechanisms during the rapid rotation of flapping wings. J. Fluid Mech. 987, A16.10.1017/jfm.2024.391CrossRefGoogle Scholar
Chen, L., Wu, J. & Cheng, B. 2019 Volumetric measurement and vorticity dynamics of leading-edge vortex formation on a revolving wing. Exp. Fluids 60, 115.10.1007/s00348-018-2657-2CrossRefGoogle Scholar
Chen, L., Wu, J. & Cheng, B. 2020 a Leading-edge vortex formation and transient lift generation on a revolving wing at low Reynolds number. Aerosp. Sci. Technol. 97, 105589.10.1016/j.ast.2019.105589CrossRefGoogle Scholar
Chen, L., Wu, J., Zhou, C., Hsu, S.-J. & Cheng, B. 2018 Unsteady aerodynamics of a pitching-flapping-perturbed revolving wing at low Reynolds number. Phys. Fluids 30 (5), 051903.10.1063/1.5024925CrossRefGoogle Scholar
Chen, L., Zhang, Y., Zhou, C. & Wu, J. 2023 b Vorticity dynamics of fully developed leading-edge vortices on revolving wings undergoing pitch-up maneuvers. Phys. Fluids 35 (3), 031904.10.1063/5.0143056CrossRefGoogle Scholar
Chen, L., Zhou, C., Werner, N.H., Cheng, B. & Wu, J. 2023 c Dual-stage radial-tangential vortex tilting reverses radial vorticity and contributes to leading-edge vortex stability on revolving wings. J. Fluid Mech. 963, A29.10.1017/jfm.2023.196CrossRefGoogle Scholar
Chen, L., Zhou, C. & Wu, J. 2020 b The role of effective angle of attack in hovering pitching-flapping-perturbed revolving wings at low Reynolds number. Phys. Fluids 32 (1), 011906.10.1063/1.5130959CrossRefGoogle Scholar
Cheng, B., Sane, S.P., Barbera, G., Troolin, D.R., Strand, T. & Deng, X.. 2013 Three-dimensional flow visualization and vorticity dynamics in revolving wings. Exp. Fluids 54, 112.10.1007/s00348-012-1423-0CrossRefGoogle Scholar
Dickinson, M.H. & Götz, K.G. 1993 Unsteady aerodynamic performance of model wings at low Reynolds numbers. J. Exp. Biol. 174 (1), 4564.10.1242/jeb.174.1.45CrossRefGoogle Scholar
Ellington, C.P. 1984 The aerodynamics of hovering insect flight. IV. Aerodynamic mechanisms. Philos. Trans. Royal Soc. London. B Biol. Sci. 305 (1122), 79113.Google Scholar
Ellington, C.P., Van Den, B., Coen, W., Alexander, P. & Thomas, A.L.R. 1996 Leading-edge vortices in insect flight. Nature 384 (6610), 626630.10.1038/384626a0CrossRefGoogle Scholar
Garmann, D.J. & Visbal, M.R. 2014 Dynamics of revolving wings for various aspect ratios. J. Fluid Mech. 748, 932956.10.1017/jfm.2014.212CrossRefGoogle Scholar
Garmann, D.J., Visbal, M.R. & Orkwis, P.D. 2013 Three-dimensional flow structure and aerodynamic loading on a revolving wing. Phys. Fluids 25 (3), 034101.10.1063/1.4794753CrossRefGoogle Scholar
Graftieaux, L., Michard, M. & Grosjean, N. 2001 Combining PIV, POD and vortex identification algorithms for the study of unsteady turbulent swirling flows. Meas. Sci. Technol. 12 (9), 1422.10.1088/0957-0233/12/9/307CrossRefGoogle Scholar
Gursul, I., Wang, Z. & Vardaki, E. 2007 Review of flow control mechanisms of leading-edge vortices. Prog. Aerosp. Sci. 43 (7-8), 246270.10.1016/j.paerosci.2007.08.001CrossRefGoogle Scholar
Harbig, R.R., Sheridan, J. & Thompson, M.C. 2013 Reynolds number and aspect ratio effects on the leading-edge vortex for rotating insect wing planforms. J. Fluid Mech. 717, 166192.10.1017/jfm.2012.565CrossRefGoogle Scholar
Hartloper, C. & Rival, D.E. 2013 Vortex development on pitching plates with lunate and truncate planforms. J. Fluid Mech. 732, 332344.10.1017/jfm.2013.400CrossRefGoogle Scholar
Hord, K. & Lian, Y. 2016 Leading edge vortex circulation development on finite aspect ratio pitch-up wings. AIAA J. 54 (9), 27552767.10.2514/1.J053911CrossRefGoogle Scholar
Jardin, T. 2017 Coriolis effect and the attachment of the leading edge vortex. J. Fluid Mech. 820, 312340.10.1017/jfm.2017.222CrossRefGoogle Scholar
Jardin, T. & Colonius, T. 2018 On the lift-optimal aspect ratio of a revolving wing at low reynolds number. J. R. Soc. Interface 15 (143), 20170933.10.1098/rsif.2017.0933CrossRefGoogle ScholarPubMed
Jardin, T., Farcy, A. & David, L. 2012 Three-dimensional effects in hovering flapping flight. J. Fluid Mech. 702, 102125.10.1017/jfm.2012.163CrossRefGoogle Scholar
Jeong, J. & Hussain, F. 1995 On the identification of a vortex. J. Fluid Mech. 285, 6994.10.1017/S0022112095000462CrossRefGoogle Scholar
Jones, A.R., Medina, A., Spooner, H. & Mulleners, K. 2016 Characterizing a burst leading-edge vortex on a rotating flat plate wing. Exp. Fluids 57, 116.10.1007/s00348-016-2143-7CrossRefGoogle Scholar
KleinHeerenbrink, M., France, L.A., Brighton, C.H. & Taylor, G.K. 2022 Optimization of avian perching manoeuvres. Nature 607 (7917), 9196.10.1038/s41586-022-04861-4CrossRefGoogle ScholarPubMed
Kruyt, J.W., Van, H., Gertjan, F., Altshuler, D.L. & Lentink, D. 2015 Power reduction and the radial limit of stall delay in revolving wings of different aspect ratio. J. R. Soc. Interface 12 (105), 20150051.10.1098/rsif.2015.0051CrossRefGoogle ScholarPubMed
Lan, S.L. & Sun, M. 2001 Aerodynamic properties of a wing performing unsteady rotational motions at low Reynolds number. Acta Mech. 149, 135147.10.1007/BF01261668CrossRefGoogle Scholar
Lee, Y.J., Lua, K.-B. & Lim, T.T. 2016 Aspect ratio effects on revolving wings with Rossby number consideration. Bioinspir. Biomim. 11 (5), 056013.10.1088/1748-3190/11/5/056013CrossRefGoogle ScholarPubMed
Lentink, D. & Dickinson, M.H. 2009 a Biofluiddynamic scaling of flapping, spinning and translating fins and wings. J. Exp. Biol. 212 (16), 26912704.10.1242/jeb.022251CrossRefGoogle ScholarPubMed
Lentink, D. & Dickinson, M.H. 2009 b Rotational accelerations stabilize leading edge vortices on revolving fly wings. J. Exp. Biol. 212 (16), 27052719.10.1242/jeb.022269CrossRefGoogle ScholarPubMed
Lentink, D., et al. 2007 How swifts control their glide performance with morphing wings. Nature 446 (7139), 10821085.10.1038/nature05733CrossRefGoogle ScholarPubMed
Lim, T.T., Teo, C.J., Lua, K.B. & Yeo, K.S. 2009 On the prolong attachment of leading edge vortex on a flapping wing. Mod. Phys. Lett. B 23 (03), 357360.10.1142/S0217984909018394CrossRefGoogle Scholar
Medina, A. & Jones, A.R. 2016 Leading-edge vortex burst on a low-aspect-ratio rotating flat plate. Phys. Rev. Fluids 1 (4), 044501.10.1103/PhysRevFluids.1.044501CrossRefGoogle Scholar
Onoue, K. & Breuer, K.S. 2017 A scaling for vortex formation on swept and unswept pitching wings. J. Fluid Mech. 832, 697720.10.1017/jfm.2017.710CrossRefGoogle Scholar
Ozen, C.A. & Rockwell, D. 2012 Three-dimensional vortex structure on a rotating wing. J. Fluid Mech. 707, 541550.10.1017/jfm.2012.298CrossRefGoogle Scholar
Perry, A.E. & Chong, M.S. 1987 A description of eddying motions and flow patterns using critical-point concepts. Annu. Rev. Fluid Mech. 19, 125155.10.1146/annurev.fl.19.010187.001013CrossRefGoogle Scholar
Phillips, N., Knowles, K. & Bomphrey, R.J. 2015 The effect of aspect ratio on the leading-edge vortex over an insect-like flapping wing. Bioinspir. Biomim. 10 (5), 056020.10.1088/1748-3190/10/5/056020CrossRefGoogle ScholarPubMed
Pick, S. & Lehmann, F.-O. 2009 Stereoscopic piv on multiple color-coded light sheets and its application to axial flow in flapping robotic insect wings. Exp. Fluids 47, 10091023.10.1007/s00348-009-0687-5CrossRefGoogle Scholar
Shyy, W. & Liu, H. 2007 Flapping wings and aerodynamic lift: the role of leading-edge vortices. AIAA J. 45 (12), 28172819.10.2514/1.33205CrossRefGoogle Scholar
Smits, A.J. 2019 Undulatory and oscillatory swimming. J. Fluid Mech. 874, P1.10.1017/jfm.2019.284CrossRefGoogle Scholar
Song, F., Lee, K.L., Soh, A.K., Zhu, F.E.N.G. & Bai, Y.L. 2004 Experimental studies of the material properties of the forewing of cicada (Homoptera, Cicadidae). J. Exp. Biol. 207 (17), 30353042.10.1242/jeb.01122CrossRefGoogle ScholarPubMed
Van Den Berg, C. & Ellington, C.P. 1997 The three–dimensional leading–edge vortex of a ‘hovering’model hawkmoth. Philos. Trans. Royal Soc. London. Series B: Biol. Sci. 352 (1351), 329340.10.1098/rstb.1997.0024CrossRefGoogle Scholar
Videler, J.J. 2006 Avian Flight. Oxford University Press.10.1093/acprof:oso/9780199299928.001.0001CrossRefGoogle Scholar
Werner, N.H., Chung, H., Wang, J., Liu, G., Cimbala, J.M., Dong, H. & Cheng, B. 2019 Radial planetary vorticity tilting in the leading-edge vortex of revolving wings. Phys. Fluids 31 (4), 041902.10.1063/1.5084967CrossRefGoogle Scholar
Wojcik, C.J. & Buchholz, J.H.J. 2014 Vorticity transport in the leading-edge vortex on a rotating blade. J. Fluid Mech. 743, 249261.10.1017/jfm.2014.18CrossRefGoogle Scholar
Wong, J.G., Kriegseis, J. & Rival, D.E. 2013 An investigation into vortex growth and stabilization for two-dimensional plunging and flapping plates with varying sweep. J. Fluid. Struct. 43, 231243.10.1016/j.jfluidstructs.2013.09.010CrossRefGoogle Scholar
Wong, J.G. & Rival, D.E. 2015 Determining the relative stability of leading-edge vortices on nominally two-dimensional flapping profiles. J. Fluid Mech. 766, 611625.10.1017/jfm.2015.39CrossRefGoogle Scholar
Wu, J., Chen, L., Zhou, C., Hsu, S.-J. & Cheng, B. 2019 Aerodynamics of a flapping-perturbed revolving wing. AIAA J. 57 (9), 37283743.10.2514/1.J056584CrossRefGoogle Scholar
Yilmaz, T.O. & Rockwell, D. 2012 Flow structure on finite-span wings due to pitch-up motion. J. Fluid Mech. 691, 518545.10.1017/jfm.2011.490CrossRefGoogle Scholar
Zangeneh, R. 2021 Investigating sweep effects on the stability of leading-edge vortices over finite-aspect ratio pitch-up wings. Phys. Fluids 33 (10), 107104.10.1063/5.0065686CrossRefGoogle Scholar
Zurman-Nasution, A.N., Ganapathisubramani, B. & Weymouth, G.D. 2021 Fin sweep angle does not determine flapping propulsive performance. J. R. Soc. Interface 18 (178), 20210174.10.1098/rsif.2021.0174CrossRefGoogle Scholar