Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-11T15:55:35.079Z Has data issue: false hasContentIssue false

Latitudinal libration driven flows in triaxial ellipsoids

Published online by Cambridge University Press:  17 April 2015

S. Vantieghem*
Affiliation:
Institut für Geophysik, Sonneggstrasse 5, ETH Zürich, Zürich, CH-8092, Switzerland
D. Cébron
Affiliation:
Institut für Geophysik, Sonneggstrasse 5, ETH Zürich, Zürich, CH-8092, Switzerland Université Grenoble Alpes, CNRS, ISTerre, Grenoble, France
J. Noir
Affiliation:
Institut für Geophysik, Sonneggstrasse 5, ETH Zürich, Zürich, CH-8092, Switzerland
*
Email address for correspondence: stijn.vantieghem@erdw.ethz.ch

Abstract

Motivated by understanding the liquid core dynamics of tidally deformed planets and moons, we present a study of incompressible flow driven by latitudinal libration within rigid triaxial ellipsoids. We first derive a laminar solution for the inviscid equations of motion under the assumption of uniform vorticity flow. This solution exhibits a resonance if the libration frequency matches the frequency of the spin-over inertial mode. Furthermore, we extend our model by introducing a reduced model of the effect of viscous Ekman layers in the limit of low Ekman number (Noir & Cébron, J. Fluid Mech., vol. 737, 2013, pp. 412–439). This theoretical approach is consistent with the results of Chan et al. (Phys. Earth Planet. Inter., vol. 187, 2011, pp. 404–415) and Zhang et al. (J. Fluid Mech., vol. 692, 2012, pp. 420–445) for spheroidal geometries. Our results are validated against systematic three-dimensional numerical simulations. In the second part of the paper, we present the first linear stability analysis of this uniform vorticity flow. To this end, we adopt different methods (Lifschitz & Hameiri, Phys. Fluids A, vol. 3, 1991, p. 2644; Gledzer & Ponomarev, Acad. Sci., USSR, Izv., Atmos. Ocean. Phys., vol. 13, 1977, pp. 565–569) that allow us to deduce upper and lower bounds for the growth rate of an instability. Our analysis shows that the uniform vorticity base flow is prone to inertial instabilities caused by a parametric resonance mechanism. This is confirmed by a set of direct numerical simulations. Applying our results to planetary settings, we find that neither a spin-over resonance nor an inertial instability can exist within the liquid core of the Moon, Io and Mercury.

Type
Papers
Copyright
© 2015 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aldridge, K. D. & Toomre, A. 1969 Axisymmetric inertial oscillations of a fluid in a rotating spherical container. J. Fluid Mech. 37 (2), 307323.CrossRefGoogle Scholar
Anderson, J. D., Jacobson, R. A., Lau, E. L., Moore, W. B. & Schubert, G. 2001 Io’s gravity field and interior structure. J. Geophys. Res. 106 (E12), 3296332969.CrossRefGoogle Scholar
Bayly, B. J. 1986 Three-dimensional instability of elliptical flow. Phys. Rev. Lett. 57 (17), 21602163.Google Scholar
Bayly, B. J., Holm, D. D. & Lifschitz, A. 1996 Three-dimensional stability of elliptical vortex columns in external strain flows. Phil. Trans. R. Soc. Lond. A 354 (1709), 895926.Google Scholar
Bullard, E. C. 1949 Electromagnetic induction in a rotating sphere. Proc. R. Soc. Lond. A 199 (1059), 413443.Google Scholar
Busse, F. H. 1968 Steady fluid flow in a precessing spheroidal shell. J. Fluid Mech. 33, 739751.CrossRefGoogle Scholar
Busse, F. H. 2010 Mean zonal flows generated by librations of a rotating spherical cavity. J. Fluid Mech. 650, 505512.CrossRefGoogle Scholar
Calkins, M. A., Noir, J., Eldredge, J. & Aurnou, J. M. 2010 Axisymmetric simulations of libration-driven fluid dynamics in a spherical shell geometry. Phys. Fluids 22, 086602.CrossRefGoogle Scholar
Cambon, C., Benoit, J. P., Shao, L. & Jacquin, L. 1994 Stability analysis and large-eddy simulation of rotating turbulence with organized eddies. J. Fluid Mech. 278, 175200.CrossRefGoogle Scholar
Cambon, C., Teissedre, C. & Jeandel, D. 1985 Etude d’effets couples de déformation et de rotation sur une turbulence homogène. J. Méc. Théor. Appl. 4 (5), 629657.Google Scholar
Cébron, D., Le Bars, M., Moutou, C. & Le Gal, P. 2012a Elliptical instability in terrestrial planets and moons. Astron. Astrophys. 539, A78.CrossRefGoogle Scholar
Cébron, D., Le Bars, M., Noir, J. & Aurnou, J. M. 2012b Libration driven elliptical instability. Phys. Fluids 24, 061703.Google Scholar
Cébron, D., Vantieghem, S. & Herreman, W. 2014 Libration-driven multipolar instabilities. J. Fluid Mech. 739, 502543.CrossRefGoogle Scholar
Chan, K. H., Liao, X. & Zhang, K. 2011 Simulations of fluid motion in spheroidal planetary cores driven by latitudinal libration. Phys. Earth Planet. Inter. 187 (3–4), 404415.CrossRefGoogle Scholar
Craik, A. D. D. & Criminale, W. O. 1986 Evolution of wavelike disturbances in shear flows: a class of exact solutions of the Navier–Stokes equations. Proc. R. Soc. Lond. A 406 (1830), 1326.Google Scholar
Dufey, J., Noyelles, B., Rambaux, N. & Lemaitre, A. 2009 Latitudinal librations of Mercury with a fluid core. Icarus 203 (1), 112.CrossRefGoogle Scholar
Dwyer, C. A., Stevenson, D. J. & Nimmo, F. 2011 A long-lived lunar dynamo driven by continuous mechanical stirring. Nature 479, 212214.CrossRefGoogle ScholarPubMed
Friedlander, S. & Vishik, M. M. 1991 Instability criteria for the flow of an inviscid incompressible fluid. Phys. Rev. Lett. 66 (17), 22042206.CrossRefGoogle ScholarPubMed
Gledzer, E. B. & Ponomarev, V. M. 1977 Finite-dimensional approximation of the motions of an incompressible fluid in an ellipsoidal cavity. Acad. Sci., USSR, Izv., Atmos. Ocean. Phys. 13, 565569.Google Scholar
Gledzer, E. B. & Ponomarev, V. M. 1992 Instability of bounded flows with elliptical streamlines. J. Fluid Mech. 240 (1), 130.CrossRefGoogle Scholar
Goldreich, P. M. & Mitchell, J. L. 2010 Elastic ice shells of synchronous moons: implications for cracks on Europa and non-synchronous rotation of Titan. Icarus 209 (2), 631638.CrossRefGoogle Scholar
Greenspan, H. P. 1968 The Theory of Rotating Fluids. Cambridge University Press.Google Scholar
Henson, V. E. & Yang, U. M. 2002 BoomerAMG: a parallel algebraic multigrid solver and preconditioner. J. Appl. Numer. Maths 41 (1), 155177.CrossRefGoogle Scholar
Hopkins, W. 1839 Researches in physical geology. Phil. Trans. R. Soc. Lond. A 129, 381423.Google Scholar
Hough, S. S. 1895 The oscillations of a rotating ellipsoidal shell containing fluid. Phil. Trans. R. Soc. Lond. A 186, 469506.Google Scholar
Kerswell, R. R. 1993 The instability of precessing flow. Geophys. Astrophys. Fluid Dyn. 72 (1), 107144.CrossRefGoogle Scholar
Kerswell, R. R. 1994 Tidal excitation of hydromagnetic waves and their damping in the earth. J. Fluid Mech. 274 (1), 219241.CrossRefGoogle Scholar
Kerswell, R. R. 1995 On the internal shear layers spawned by the critical regions in oscillatory Ekman boundary layers. J. Fluid Mech. 298, 311325.CrossRefGoogle Scholar
Kerswell, R. R. 2002 Elliptical instability. Annu. Rev. Fluid Mech. 34 (1), 83113.CrossRefGoogle Scholar
Kerswell, R. R. & Malkus, W. V. R. 1998 Tidal instability as the source for Io’s magnetic signature. Geophys. Res. Lett. 25 (5), 603606.Google Scholar
Kida, S. 2013 Instability by weak precession of the flow in a rotating sphere. Procedia IUTAM 7, 183192.CrossRefGoogle Scholar
Kim, J. & Moin, P. 1985 Application of a fractional-step method to incompressible Navier–Stokes equations. J. Comput. Phys. 59, 308323.CrossRefGoogle Scholar
Lacaze, L., Le Gal, P. & Le Dizès, S. 2004 Elliptical instability in a rotating spheroid. J. Fluid Mech. 505, 122.CrossRefGoogle Scholar
Larmor, J. 1919 How could a rotating body such as the Sun become a magnet? In Reports of the British Association, vol. 87, pp. 159160.Google Scholar
Le Bars, M., Lacaze, L., Le Dizès, S., Le Gal, P. & Rieutord, M. 2010 Tidal instability in stellar and planetary binary systems. Phys. Earth Planet. Inter. 178 (1–2), 4855.CrossRefGoogle Scholar
Le Bars, M., Wieczorek, M. A., Karatekin, Ö., Cébron, D. & Laneuville, M. 2011 An impact-driven dynamo for the early moon. Nature 479, 215218.CrossRefGoogle ScholarPubMed
Leblanc, S. & Cambon, C. 1997 On the three-dimensional instabilities of plane flows subjected to Coriolis force. Phys. Fluids 9 (5), 13071316.CrossRefGoogle Scholar
Lebovitz, N. R. 1989 The stability equations for rotating, inviscid fluids: Galerkin methods and orthogonal bases. Geophys. Astrophys. Fluid Dyn. 46 (4), 221243.Google Scholar
Lebovitz, N. R. & Lifschitz, A. 1996 Short-wavelength instabilities of Riemann ellipsoids. Phil. Trans. R. Soc. Lond. A 354 (1709), 927950.Google Scholar
Le Dizès, S. 2000 Three-dimensional instability of a multipolar vortex in a rotating flow. Phys. Fluids 12, 27622774.CrossRefGoogle Scholar
Le Dizès, S. & Eloy, C. 1999 Short-wavelength instability of a vortex in a multipolar strain field. Phys. Fluids 11, 500502.CrossRefGoogle Scholar
Lifschitz, A. 1994 On the instability of certain motions of an ideal incompressible fluid. Adv. Appl. Maths 15 (4), 404436.CrossRefGoogle Scholar
Lifschitz, A. & Hameiri, E. 1991 Local stability conditions in fluid dynamics. Phys. Fluids A 3, 26442651.CrossRefGoogle Scholar
Lifschitz, A. & Hameiri, E. 1993 Localized instabilities of vortex rings with swirl. Commun. Pure Appl. Maths 46 (10), 13791408.CrossRefGoogle Scholar
Lin, Y., Marti, P. & Noir, J. 2014 Parametric instability associated with the conical shear layers in a precessing sphere. Phys. Fluids (submitted).Google Scholar
Malkus, W. V. R. 1968 Precession of the earth as the cause of geomagnetism: experiments lend support to the proposal that precessional torques drive the earth’s dynamo. Science 160 (3825), 259264.CrossRefGoogle Scholar
Manneville, P. 2010 Instabilities, Chaos and Turbulence. Imperial College Press.CrossRefGoogle Scholar
Margot, J. L., Peale, S. J., Jurgens, R. F., Slade, M. A. & Holin, I. V. 2007 Large amplitude libration of Mercury reveals a molten core. Science 316 (5825), 710714.Google Scholar
Marti, P., Schaeffer, N., Hollerbach, R., Cébron, D., Nore, C., Luddens, F., Guermond, J.-L., Aubert, J., Takehiro, S., Sasaki, Y., Hayashi, Y.-Y., Simitev, R., Busse, F., Vantieghem, S. & Jackson, A. 2014 Full sphere hydrodynamic and dynamo benchmarks. Geophys. J. Intl 197 (1), 119134.CrossRefGoogle Scholar
Murray, C. D. & Dermott, S. F. 2000 Solar System Dynamic. Cambridge University Press.CrossRefGoogle Scholar
Noir, J., Cardin, P., Jault, D. & Masson, J. P. 2003 Experimental evidence of non-linear resonance effects between retrograde precession and the tilt-over mode within a spheroid. Geophys. J. Intl 154 (2), 407416.CrossRefGoogle Scholar
Noir, J. & Cébron, D. 2013 Precession-driven flows in non-axisymmetric ellipsoids. J. Fluid Mech. 737, 412439.CrossRefGoogle Scholar
Noir, J., Hemmerlin, F., Wicht, J., Baca, S. M. & Aurnou, J. M. 2009 An experimental and numerical study of librationally driven flow in planetary cores and subsurface oceans. Phys. Earth Planet. Inter. 173, 141152.CrossRefGoogle Scholar
Noyelles, B. 2012 The rotation of Io predicted by the Poincaré–Hough model. Icarus 223 (1), 621624.CrossRefGoogle Scholar
Poincaré, H. 1910 Sur la précession des corps déformables. Bull. Astron. 27, 321356.CrossRefGoogle Scholar
Rambaux, N., Van Hoolst, T., Dehant, V. & Bois, E. 2007 Inertial core-mantle coupling and libration of Mercury. Astron. Astrophys. 468, 711719.CrossRefGoogle Scholar
Rieutord, M. & Valdettaro, L. 1997 Inertial waves in a rotating spherical shell. J. Fluid Mech. 341, 7799.Google Scholar
Roberts, P. H. & Wu, C. C. 2011 On flows having constant vorticity. Physica D 240, 16151628.Google Scholar
Sauret, A., Cébron, D., Le Bars, M. & Le Dizès, S. 2012 Fluid flows in a librating cylinder. Phys. Fluids 24, 026603.Google Scholar
Sauret, A., Cébron, D., Morize, C. & Le, B. 2010 Experimental and numerical study of mean zonal flows generated by librations of a rotating spherical cavity. J. Fluid Mech. 662 (1), 260268.Google Scholar
Sipp, D. & Jacquin, L. 1998 Elliptic instability in two-dimensional flattened Taylor–Green vortices. Phys. Fluids 10, 839849.CrossRefGoogle Scholar
Sloudsky, T. 1895 De la rotation de la terre supposée fluide à son intérieur. Bull. Soc. Imp. Natur. Mosc. IX, 285318.Google Scholar
Stewartson, K. & Roberts, P. H. 1963 On the motion of a liquid in a spheroidal cavity of precessing rigid body. J. Fluid Mech. 17, 120.CrossRefGoogle Scholar
Thompson, W. 1895 On the age of the earth. Nature 51, 438440.Google Scholar
Tilgner, A. 2007 8.07: rotational dynamics of the core. In Treatise on Geophysics, chap. 8, pp. 207243. Elsevier.CrossRefGoogle Scholar
Vantieghem, S.2011 Numerical simulations of quasi-static magnetohydrodynamics using an unstructured finite-volume solver: development and applications. PhD thesis, Université Libre de Bruxelles.Google Scholar
Vantieghem, S. 2014 Inertial modes in a rotating triaxial ellipsoid. Proc. R. Soc. Lond. A 470 (2168), 20140093.Google Scholar
Williams, J. G., Boggs, D. H., Yoder, C. F., Ratcliff, J. T. & Dickey, J. O. 2001 Lunar rotational dissipation in solid body and molten core. J. Geophys. Res. 106 (E11), 2793327968.CrossRefGoogle Scholar
Williams, J. G. & Dickey, J. O.2002 Lunar geophysics, geodesy, and dynamic. In 13th International Workshop on Laser Ranging, 7–11 October 2002, Washington DC. NASA.Google Scholar
Wu, C. C. & Roberts, P. H. 2011 High order instabilities of the Poincaré solution for precessionally driven flow. Geophys. Astrophys. Fluid Dyn. 105 (2–3), 287303.CrossRefGoogle Scholar
Wu, C. C. & Roberts, P. H. 2013 On a dynamo driven topographically by longitudinal libration. Geophys. Astrophys. Fluid Dyn. 107 (1–2), 2044.CrossRefGoogle Scholar
Yoder, C. F. & Hutchison, R. 1981 The free librations of a dissipative moon [and discussion]. Phil. Trans. R. Soc. Lond. A 303 (1477), 327338.Google Scholar
Zhang, K., Chan, K. H. & Liao, X. 2012 Asymptotic theory of resonant flow in a spheroidal cavity driven by latitudinal libration. J. Fluid Mech. 692, 420445.CrossRefGoogle Scholar
Zhang, K., Chan, K. H., Liao, X. & Aurnou, J. 2013 The non-resonant response of fluid in a rapidly rotating sphere undergoing longitudinal libration. J. Fluid Mech. 720, 212235.CrossRefGoogle Scholar
Zhang, K., Liao, X. & Earnshaw, P. 2004 On inertial waves and oscillations in a rapidly rotating spheroid. J. Fluid Mech. 504, 140.Google Scholar