Hostname: page-component-5b777bbd6c-xnzsz Total loading time: 0 Render date: 2025-06-24T12:17:25.445Z Has data issue: false hasContentIssue false

Large eddy simulations of wall-bounded turbulence based on interscale energy transfer among resolved scales

Published online by Cambridge University Press:  16 May 2025

Guangrui Sun*
Affiliation:
School of Energy Science and Engineering, Harbin Institute of Technology, Harbin 150001, PR China
Xianghui Kong
Affiliation:
School of Energy Science and Engineering, Harbin Institute of Technology, Harbin 150001, PR China
J. Andrzej Domaradzki
Affiliation:
Department of Aerospace & Mechanical Engineering, University of Southern California, Los Angeles, CA 90089, USA
*
Corresponding author: Guangrui Sun, g.sun@hit.edu.cn

Abstract

A previously developed modelling procedure for large eddy simulations (LESs) is extended to allow physical space implementations for inhomogeneous flows. The method is inspired by the well-established theoretical analyses and numerical investigations of homogeneous isotropic turbulence. A general procedure that focuses on recovering the full subgrid scale (SGS) dissipation from resolved fields is formulated, combining the advantages of both the structural and the functional strategy of SGS modelling. The interscale energy transfer is obtained from the test-filtered velocity field, corresponding to the subfilter scale (SFS) stress, or, equivalently, the similarity model is used to compute the total SGS dissipation. The energy transfer is then cast in the form of eddy viscosity, allowing the method to retain the desired total SGS dissipation in low resolution LES runs. The procedure also exhibits backscatter without causing numerical instabilities. The new approach is general and self-contained, working well for different filtering kernels, Reynolds numbers and grid resolutions.

Type
JFM Papers
Copyright
© The Author(s), 2025. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Abkar, M. & Moin, P. 2017 Large-eddy simulation of thermally stratified atmospheric boundary-layer flow using a minimum dissipation model. Boundary-Layer Meteorol. 165 (3), 405419.CrossRefGoogle ScholarPubMed
Agdestein, S.D. & Sanderse, B. 2025 Discretize first, filter next: learning divergence-consistent closure models for large-eddy simulation. J. Comput. Phys. 522, 113577.CrossRefGoogle Scholar
Anderson, B.W. & Domaradzki, J.A. 2012 A subgrid-scale model for large-eddy simulation based on the physics of interscale energy transfer in turbulence. Phys. Fluids 24 (6), 065104.CrossRefGoogle Scholar
Balarac, G., Sommer, J.L., Meunier, X. & Vollant, A. 2013 A dynamic regularized gradient model of the subgrid-scale scalar flux for large eddy simulations. Phys. Fluids 25 (7), 075107.CrossRefGoogle Scholar
Bardina, J., Ferziger, J. & Reynolds, W. 1980 Improved subgrid-scale models for large-eddy simulation. In 13th Fluid and Plasma Dynamics Conference, American Institute of Aeronautics and Astronautics.CrossRefGoogle Scholar
Bardina, J., Ferziger, J.H. & Reynolds, W.C. 1983 Improved Turbulence Models Based On Large Eddy Simulation of Homogeneous, Incompressible Turbulent Flows. Stanford Univ. Report.Google Scholar
Berselli, L.C., Iliescu, T. & Layton, W.J. 2006 Mathematics of Large Eddy Simulation of Turbulent Flows. Springer-Verlag.Google Scholar
Blackburn, H.M. & Schmidt, S. 2003 Spectral element filtering techniques for large eddy simulation with dynamic estimation. J. Comput. Phys. 186 (2), 610629.CrossRefGoogle Scholar
Bull, J.R. & Jameson, A. 2016 Explicit filtering and exact reconstruction of the sub-filter stresses in large eddy simulation. J. Comput. Phys. 306, 117136.CrossRefGoogle Scholar
Báez Vidal, A., Lehmkuhl, O., Trias, F.X. & Pérez-Segarra, C.D. 2016 On the properties of discrete spatial filters for cfd. J. Comput. Phys. 326, 474498.CrossRefGoogle Scholar
Cadieux, F. & Domaradzki, J.A. 2015 Performance of subgrid-scale models in coarse large eddy simulations of a laminar separation bubble. Phys. Fluids 27 (4), 045112.CrossRefGoogle Scholar
Cadieux, F., Sun, G. & Domaradzki, J.A. 2017 Effects of numerical dissipation on the interpretation of simulation results in computational fluid dynamics. Comput. Fluids 154, 256272.CrossRefGoogle Scholar
Canuto, C., Hussaini, M.Y., Quarteroni, A. & Zang, T.A. 2007 Spectral Methods : Fundamentals in Single Domains. Springer.CrossRefGoogle Scholar
Castiglioni, G., Sun, G. & Domaradzki, J.A. 2019 On the estimation of artificial dissipation and dispersion errors in a generic partial differential equation. J. Comput. Phys. 397, 108843.CrossRefGoogle Scholar
Chai, X. & Mahesh, K. 2012 Dynamic -equation model for large-eddy simulation of compressible flows. J. Fluid Mech. 699, 385413.CrossRefGoogle Scholar
Chollet, J.-P. & Lesieur, M. 1981 Parameterization of small scales of three-dimensional isotropic turbulence utilizing spectral closures. J. Atmos. Sci. 38 (12), 27472757.2.0.CO;2>CrossRefGoogle Scholar
van Cittert, P.H. 1931 Zum Einfluß der Spaltbreite auf die Intensitätsverteilung in Spektrallinien. II. Z. Phys. 69 (5-6), 298308.CrossRefGoogle Scholar
Clark, R.A., Ferziger, J.H. & Reynolds, W.C. 1979 Evaluation of subgrid-scale models using an accurately simulated turbulent flow. J. Fluid Mech. 91 (01), 1.CrossRefGoogle Scholar
Cook, A.W. 1997 Determination of the constant coefficient in scale similarity models of turbulence. Phys. Fluids 9 (5), 14851487.CrossRefGoogle Scholar
Domaradzki, J.A. 2024 Autonomous large-eddy simulations of turbulence using eddy viscosity derived from the subgrid-scale similarity stress tensor. J. Fluid Mech. 985, A48.CrossRefGoogle Scholar
Domaradzki, J.A. 2021 a Large eddy simulations of high Reynolds number turbulence based on interscale energy transfer among resolved scales. Phys. Rev. Fluids 6 (4), 044609.CrossRefGoogle Scholar
Domaradzki, J.A. 2021 b Toward autonomous large eddy simulations of turbulence based on interscale energy transfer among resolved scales. Phys. Rev. Fluids 6 (10), 104606.CrossRefGoogle Scholar
Domaradzki, J.A. 2022 a Near-autonomous large eddy simulations of turbulence based on interscale energy transfer among resolved scales. In Proceedings of the International Symposium on Turbulence and Shear Flow Phenomena TSFP-12. Paper 54.CrossRefGoogle Scholar
Domaradzki, J.A. 2022 b, Near-autonomous large eddy simulations of turbulence based on interscale energy transfer among resolved scales. Phys. Rev. Fluids 7 (11), 114601.CrossRefGoogle Scholar
Domaradzki, J.A. & Adams, N.A. 2002 Direct modelling of subgrid scales of turbulence in large eddy simulations. J. Turbul. 3, N24.CrossRefGoogle Scholar
Domaradzki, J.A. & Carati, D. 2007 A comparison of spectral sharp and smooth filters in the analysis of nonlinear interactions and energy transfer in turbulence. Phys. Fluids 19 (8), 085111.CrossRefGoogle Scholar
Domaradzki, J.A. & Liu, W. 1995 Approximation of subgrid-scale energy transfer based on the dynamics of resolved scales of turbulence. Phys. Fluids 7 (8), 20252035.CrossRefGoogle Scholar
Domaradzki, J.A., Liu, W. & Brachet, M.E. 1993 An analysis of subgrid-scale interactions in numerically simulated isotropic turbulence. Phys. Fluids A: Fluid Dyn. 5 (7), 17471759.CrossRefGoogle Scholar
Domaradzki, J.A., Liu, W., Härtel, C. & Kleiser, L. 1994 Energy transfer in numerically simulated wall-bounded turbulent flows. Phys. Fluids 6 (4), 15831599.CrossRefGoogle Scholar
Domaradzki, J.A. & Rogallo, R.S. 1990 Local energy transfer and nonlocal interactions in homogeneous, isotropic turbulence. Phys. Fluids A: Fluid Dyn. 2 (3), 413426.CrossRefGoogle Scholar
Fabre, Y. & Balarac, G. 2011 Development of a new dynamic procedure for the Clark model of the subgrid-scale scalar flux using the concept of optimal estimator. Phys. Fluids 23 (11), 115103.CrossRefGoogle Scholar
van Gastelen, T., Edeling, W. & Sanderse, B. 2024 Energy-conserving neural network for turbulence closure modeling. J. Comput. Phys. 508, 113003.CrossRefGoogle Scholar
Germano, M., Piomelli, U., Moin, P. & Cabot, W.H. 1991 A dynamic subgrid-scale eddy viscosity model. Phys. Fluids A: Fluid Dyn. 3 (7), 17601765.CrossRefGoogle Scholar
Ghosal, S. & Moin, P. 1995 The basic equations for the large eddy simulation of turbulent flows in complex geometry. J. Comput. Phys. 118 (1), 2437.CrossRefGoogle Scholar
Jeanmart, H. & Winckelmans, G. 2007 Investigation of eddy-viscosity models modified using discrete filters: a simplified “regularized variational multiscale model” and an “enhanced field model. Phys. Fluids 19 (5), 055110.CrossRefGoogle Scholar
Ji, X., Li, X., Tong, F. & Yu, C. 2023 Large eddy simulation of shock wave/turbulent boundary layer interaction under incipient and fully separated conditions. Phys. Fluids 35 (4), 046106.Google Scholar
Johnson, P.L. 2022 A physics-inspired alternative to spatial filtering for large-eddy simulations of turbulent flows. J. Fluid Mech. 934, A30.CrossRefGoogle Scholar
Kleiser, L. & Schumann, U. 1980 Treatment of incompressibility and boundary conditions in 3-d numerical spectral simulations of plane channel flows, 165173.CrossRefGoogle Scholar
Kraichnan, R.H. 1976 Eddy viscosity in two and three dimensions. J. Atmos. Sci. 33 (8), 15211536.2.0.CO;2>CrossRefGoogle Scholar
Kurz, M., Offenhäuser, P. & Beck, A. 2023 Deep reinforcement learning for turbulence modeling in large eddy simulations. Intl J. Heat Fluid Flow 99, 109094.CrossRefGoogle Scholar
Langford, J.A. & Moser, R.D. 2001 Breakdown of continuity in large-eddy simulation. Phys. Fluids 13 (5), 15241527.CrossRefGoogle Scholar
Lazarov, B.S. & Sigmund, O. 2010 Filters in topology optimization based on helmholtz-type differential equations. Intl J. Numer. Meth. Engng 86 (6), 765781.CrossRefGoogle Scholar
Lee, M. & Moser, R.D. 2015 Direct numerical simulation of turbulent channel flow up to ${R}e_\tau \approx 5200$ . J. Fluid Mech. 774, 395415.CrossRefGoogle Scholar
Lele, S.K. 1992 Compact finite difference schemes with spectral-like resolution. J. Comput. Phys. 103 (1), 1642.CrossRefGoogle Scholar
Leonard, A. 1975 Energy cascade in large-eddy simulations of turbulent fluid flows. In Advances in Geophysics, pp. 237248. Elsevier.Google Scholar
Lesieur, M. 1997 Turbulence in Fluids. Springer.CrossRefGoogle Scholar
Lesieur, M. & Métais, O. 1996 New trends in large-eddy simulations of turbulence. Annu. Rev. Fluid Mech. 28 (1), 4582.CrossRefGoogle Scholar
Lilly, D.K. 1992 A proposed modification of the Germano subgrid-scale closure method. Phys. Fluids A: Fluid Dyn. 4 (3), 633635.CrossRefGoogle Scholar
Liu, S., Meneveau, C. & Katz, J. 1994 On the properties of similarity subgrid-scale models as deduced from measurements in a turbulent jet. J. Fluid Mech. 275, 83119.CrossRefGoogle Scholar
Loh, K.-C. & Domaradzki, J.A. 1999 The subgrid-scale estimation model on nonuniform grids. Phys. Fluids 11 (12), 37863792.CrossRefGoogle Scholar
Lund, T.S. 1997 On the use of discrete filters for large eddy simulation. Annu. Res. Briefs 8395.Google Scholar
Meneveau, C. & Katz, J. 2000 Scale-invariance and turbulence models for large-eddy simulation. Annu. Rev. Fluid Mech 32 (1), 132.CrossRefGoogle Scholar
Moser, R.D., Haering, S.W. & Yalla, G.R. 2021 Statistical properties of subgrid-scale turbulence models. Annu. Rev. Fluid Mech. 53 (1), 255286.CrossRefGoogle Scholar
Moser, R.D., Kim, J. & Mansour, N.N. 1999 Direct numerical simulation of turbulent channel flow up to ${R}e_\tau$ = 590. Phys. Fluids 11 (4), 943945.CrossRefGoogle Scholar
Novati, G., de Laroussilhe, H.L. & Koumoutsakos, P. 2021 Automating turbulence modelling by multi-agent reinforcement learning. Nat. Mach. Intell. 3 (1), 8796.CrossRefGoogle Scholar
Piomelli, U. 1993 High Reynolds number calculations using the dynamic subgrid-scale stress model. Phys. Fluids A: Fluid Dyn. 5 (6), 14841490.CrossRefGoogle Scholar
Piomelli, U., Cabot, W.H., Moin, P. & Lee, S. 1991 Subgrid-scale backscatter in turbulent and transitional flows. Phys. Fluids A: Fluid Dyn. 3 (7), 17661771.CrossRefGoogle Scholar
Piomelli, U., Moin, P. & Ferziger, J.H. 1988 Model consistency in large eddy simulation of turbulent channel flows. Phys. Fluids 31 (7), 18841891.CrossRefGoogle Scholar
Pope, S.B. 2000 Turbulent Flows. Cambridge University Press.Google Scholar
Qi, H., Li, X., Hu, R. & Yu, C. 2022 Quasi-dynamic subgrid-scale kinetic energy equation model for large-eddy simulation of compressible flows. J. Fluid Mech. 947, A22.CrossRefGoogle Scholar
Qi, H., Li, X., Ji, X., Tong, F. & Yu, C. 2023 Large-eddy simulation of a hypersonic turbulent boundary layer over a compression corner. AIP Adv. 13 (2), 025265.CrossRefGoogle Scholar
Rezaeiravesh, S., Vinuesa, R. & Schlatter, P. 2021 On numerical uncertainties in scale-resolving simulations of canonical wall turbulence. Comput. Fluids 227, 105024.CrossRefGoogle Scholar
Rouhi, A., Piomelli, U. & Geurts, B.J. 2016 Dynamic subfilter-scale stress model for large-eddy simulations. Phys. Rev. Fluids 1 (4), 044401.CrossRefGoogle Scholar
Rozema, W., Bae, H. J., Moin, P. & Verstappen, R. 2015 Minimum-dissipation models for large-eddy simulation. Phys. Fluids 27 (8), 085107.CrossRefGoogle Scholar
Sagaut, P. 2006 Large Eddy Simulation for Incompressible Flows. Springer.Google Scholar
Schumann, U. 1975 Subgrid scale model for finite difference simulations of turbulent flows in plane channels and annuli. J. Comput. Phys. 18 (4), 376404.CrossRefGoogle Scholar
Stolz, S. & Adams, N.A. 1999 An approximate deconvolution procedure for large-eddy simulation. Phys. Fluids 11 (7), 16991701.CrossRefGoogle Scholar
Sun, G. & Domaradzki, J.A. 2018 Implicit LES using adaptive filtering. J. Comput. Phys. 359, 380408.CrossRefGoogle Scholar
Sun, G., Wan, D. & Zhang, M. 2021 Nonlinear evolutions of streaky structures in viscoelastic pipe flows. J. Non-Newtonian Fluid Mech. 295, 104622.CrossRefGoogle Scholar
Sun, G., Wang, X. & Yang, Y. 2025 A direct quantification of numerical dissipation towards improved large eddy simulations. Physica D: Nonlinear Phenom. 471, 134433.CrossRefGoogle Scholar
Sun, G. & Yang, L. 2023 Large eddy simulations of turbulent flow based on a removal of energy production through nonlinear interactions. Phys. Fluids 35 (1), 015145.CrossRefGoogle Scholar
Thiry, O. & Winckelmans, G. 2016 A mixed multiscale model better accounting for the cross term of the subgrid-scale stress and for backscatter. Phys. Fluids 28 (2), 025111.CrossRefGoogle Scholar
Toosi, S. & Larsson, J. 2017 Anisotropic grid-adaptation in large eddy simulations. Comput. Fluids 156, 146161.CrossRefGoogle Scholar
Van Driest, E.R. 1956 On turbulent flow near a wall. J. Aeronaut. Sci. 23 (11), 10071011.CrossRefGoogle Scholar
Verstappen, R. 2011 When does eddy viscosity damp subfilter scales sufficiently? J. Sci. Comput. 49 (1), 94110.CrossRefGoogle Scholar
Verstappen, R., Rozema, W. & Bae, H.J. 2014 Numerical scale separation in large-eddy simulation. In Proceedings of the Summer Program, pp. 417426.Google Scholar
Vreman, B., Geurts, B. & Kuerten, H. 1996 Large-eddy simulation of the temporal mixing layer using the clark model. Theor. Comput. Fluid Dyn. 8 (4), 309324.CrossRefGoogle Scholar
Vreman, B., Geurts, B. & Kuerten, H. 1997 Large-eddy simulation of the turbulent mixing layer. J. Fluid Mech. 339, 357390.CrossRefGoogle Scholar
Zang, Y., Street, R. L. & Koseff, J.R. 1993 A dynamic mixed subgrid-scale model and its application to turbulent recirculating flows. Phys. Fluids A: Fluid Dyn. 5 (12), 31863196.CrossRefGoogle Scholar