Hostname: page-component-54dcc4c588-ff9ft Total loading time: 0 Render date: 2025-09-11T14:23:59.625Z Has data issue: false hasContentIssue false

Laminar–turbulent transition with pressure gradient: influences of effective slope and skewness of rough surface

Published online by Cambridge University Press:  08 September 2025

Weihao Ling
Affiliation:
School of Energy and Power Engineering, Xi’an Jiaotong University, Xi’an, Shaanxi 710049, PR China
Zhiheng Wang*
Affiliation:
School of Energy and Power Engineering, Xi’an Jiaotong University, Xi’an, Shaanxi 710049, PR China
Wenlin Huang
Affiliation:
School of Energy and Power Engineering, Xi’an Jiaotong University, Xi’an, Shaanxi 710049, PR China
Song Gao
Affiliation:
School of Energy and Power Engineering, Xi’an Jiaotong University, Xi’an, Shaanxi 710049, PR China
Guang Xi
Affiliation:
School of Energy and Power Engineering, Xi’an Jiaotong University, Xi’an, Shaanxi 710049, PR China
*
Corresponding author: Zhiheng Wang, wangzhiheng@mail.xjtu.edu.cn

Abstract

Direct numerical simulations are conducted to investigate the transition flow over a flat plate featuring pressure gradients and a three-dimensional rough surface. The rough surface is categorised into nine types based on the effective slope ratio ${E{{S}_{z}}}/{E{{S}_{x}}}$ ($ES_{z}$: spanwise effective slope, $ES_{x}$: streamwise effective slope) and skewness $Sk$, with the embedded boundary method employed for resolving the solid wall. Findings indicate that the influence of ${E{{S}_{z}}}/{E{{S}_{x}}}$ on the streamwise vortex pair counters the effects on the wall-normal shear and the two-dimensional spanwise vortex sheet. Negative skewness alone can stimulate all three components of the hairpin vortex simultaneously. The new formula for predicting the sheltering angle, which incorporates the up-ejecting segment, demonstrates enhanced accuracy in predicting the sheltering area across the entire rough surface, outperforming the previous formulation. The forward displacement relative to the drag peak of the pressure stagnation point along the streamwise direction remains unaffected by the spanwise effective slope and the skewness. In the upper transition region, negative skewness significantly intensifies both the production and dissipation terms of the fluctuating kinetic energy, which correlate with the inviscid instability of the separation flow and the viscous instability induced by the lift-up mechanism. During the early phase of transition, negative skewness is capable of producing linear modes that match the intensity of nonlinear coherent structures at intermediate to high frequencies, exhibiting quasi-orthogonality. During the late transition phase, zero skewness can give rise to linear modes featuring robust quasi-orthogonality at low frequencies.

Information

Type
JFM Papers
Copyright
© The Author(s), 2025. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Acarlar, M.S. & Smith, C.R. 1987 A study of hairpin vortices in a laminar boundary-layer Part 1. Hairpin vortices generated by a hemisphere protuberance. J. Fluid Mech. 175, 141.10.1017/S0022112087000272CrossRefGoogle Scholar
Alam, M. & Sandham, N.D. 2000 Direct numerical simulation of ’short’ laminar separation bubbles with turbulent reattachment. J. Fluid Mech. 403, 223250.10.1017/S0022112099007119CrossRefGoogle Scholar
Ananth, S.M., Nardini, M., Vaid, A., Kozul, M., Rao Vadlamani, N. & Sandberg, R.D. 2023 Effects of riblet dimensions on the transitional boundary layers over high-lift turbine blades. J. Turbomach. 146, 031012.10.1115/1.4064087CrossRefGoogle Scholar
Andersson, P., Brandt, L., Bottaro, A. & Henningson, D.S. 2001 On the breakdown of boundary layer streaks. J. Fluid Mech. 428, 2960.10.1017/S0022112000002421CrossRefGoogle Scholar
Bae, H.J., Lozano-Durán, A. & Mckeon, B.J. 2021 Nonlinear mechanism of the self-sustaining process in the buffer and logarithmic layer of wall-bounded flows. J. Fluid Mech. 914, A3.10.1017/jfm.2020.857CrossRefGoogle Scholar
Bandyopadhyay, P.R. 1987 Rough-wall turbulent boundary-layers in the transition regime. J. Fluid Mech. 180, 231266.10.1017/S0022112087001794CrossRefGoogle Scholar
Blackburn, H.M., Lee, D., Albrecht, T. & Singh, J. 2019 Semtex: a spectral element-Fourier solver for the incompressible Navier–Stokes equations in cylindrical or Cartesian coordinates. Comput. Phys. Commun. 245, 106804.10.1016/j.cpc.2019.05.015CrossRefGoogle Scholar
Bons, J.P. 2010 A review of surface roughness effects in gas turbines. J. Turbomach. 132 (2), 021004.10.1115/1.3066315CrossRefGoogle Scholar
Borello, D., Salvagni, A. & Hanjalic, K. 2015 Effects of rotation on flow in an asymmetric rib-roughened duct: LES study. Intl J. Heat Fluid Flow 55, 104119.10.1016/j.ijheatfluidflow.2015.07.012CrossRefGoogle Scholar
Bucci, M.A. 2017 Subcritical and supercritical dynamics of incompressible flow over miniaturized roughness elements. School PhD thesis, Ecole nationale supérieure d’arts et métiers - ENSAM.Google Scholar
Bucci, M.A., Cherubini, S., Loiseau, J.C. & Robinet, J.C. 2021 Influence of freestream turbulence on the flow over a wall roughness. Phys. Rev. Fluids 6 (6), 063903.10.1103/PhysRevFluids.6.063903CrossRefGoogle Scholar
Busse, A. & Jelly, T.O. 2023 Effect of high skewness and kurtosis on turbulent channel flow over irregular rough walls. J. Turbul 24 (1-2), 5781.10.1080/14685248.2023.2173761CrossRefGoogle Scholar
Busse, A., Lutzner, M. & Sandham, N.D. 2015 Direct numerical simulation of turbulent flow over a rough surface based on a surface scan. Comput. Fluids 116, 129147.10.1016/j.compfluid.2015.04.008CrossRefGoogle Scholar
Chan, L., Macdonald, M., Chung, D., Hutchins, N. & Ooi, A. 2018 Secondary motion in turbulent pipe flow with three-dimensional roughness. J. Fluid Mech. 854, 533.10.1017/jfm.2018.570CrossRefGoogle Scholar
Chung, D., Hutchins, N., Schultz, M.P. & Flack, K.A. 2021 Predicting the drag of rough surfaces. Annu. Rev. Fluid Mech. 53, 439471.10.1146/annurev-fluid-062520-115127CrossRefGoogle Scholar
Cohen, J., Karp, M. & Mehta, V. 2014 A minimal flow-elements model for the generation of packets of hairpin vortices in shear flows. J. Fluid Mech. 747, 3043.10.1017/jfm.2014.140CrossRefGoogle Scholar
Coull, J.D. & Hodson, H.P. 2011 Unsteady boundary-layer transition in low-pressure turbines. J. Fluid Mech. 681, 370410.10.1017/jfm.2011.204CrossRefGoogle Scholar
De Vincentiis, L., Henningson, D.S. & Hanifi, A. 2022 Transition in an infinite swept-wing boundary layer subject to surface roughness and free-stream turbulence. J. Fluid Mech. 931, A24.10.1017/jfm.2021.962CrossRefGoogle Scholar
Endrikat, S., Modesti, D., Garcia-mayoral, R., Hutchins, N. & Chung, D. 2021 Influence of riblet shapes on the occurrence of Kelvin–Helmholtz rollers. J. Fluid Mech. 913, A37.10.1017/jfm.2021.2CrossRefGoogle Scholar
Ergin, F.G. & White, E.B. 2006 Unsteady and transitional flows behind roughness elements. AIAA J. 44 (11), 25042514.10.2514/1.17459CrossRefGoogle Scholar
Ericson, C. 2005 Real-Time Collision Detection. Morgan Kaufmann Publishers.Google Scholar
Fransson, J.H.M., Brandt, L., Talamelli, A. & Cossu, C. 2004 Experimental and theoretical investigation of the nonmodal growth of steady streaks in a flat plate boundary layer. Phys. Fluids 16 (10), 36273638.10.1063/1.1773493CrossRefGoogle Scholar
Gilge, P., Kellersmann, A., Friedrichs, J. & Seume, J.R. 2019 Surface roughness of real operationally used compressor blade and blisk. Proc. Inst. Mech Engng G: J. Aerodyn. 233 (14), 53215330.10.1177/0954410019843438CrossRefGoogle Scholar
Hosseinverdi, S., Balzer, W. & Fasel, H. 2012 Direct numerical simulations of the effect of Free-Stream Turbulence on ’long. In Laminar Separation Bubbles, 42nd AIAA Fluid Dynamics Conference and Exhibit. AIAA.10.2514/6.2012-2972CrossRefGoogle Scholar
Hosseinverdi, S. & Fasel, H.F. 2019 Numerical investigation of laminar-turbulent transition in laminar separation bubbles: the effect of free-stream turbulence. J. Fluid Mech. 858, 714759.10.1017/jfm.2018.809CrossRefGoogle Scholar
Ishida, T., Ohira, K., Hosoi, R., Tokugawa, N. & Tsukahara, T. 2022 Numerical and experimental analysis of three-dimensional boundary-layer transition induced by isolated cylindrical roughness elements. Intl J. Aeronaut. Space Sci. 23, 649659.10.1007/s42405-022-00485-0CrossRefGoogle Scholar
Jagadeesh, C. & Fasel, H. 2013 Experimental investigation of the structure and dynamics of Laminar Separation Bubbles. In 50th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition. AIAA.10.2514/6.2012-755CrossRefGoogle Scholar
Jelly, T.O. & Busse, A. 2018 Reynolds and dispersive shear stress contributions above highly skewed roughness. J. Fluid Mech. 852, 710724.10.1017/jfm.2018.541CrossRefGoogle Scholar
Jelly, T.O. & Busse, A. 2019a Multi-scale anisotropic rough surface algorithm: technical documentation and user guide. Tech. Rep, University of Glasgow.Google Scholar
Jelly, T.O., Nardini, M., Rosenzweig, M., Leggett, J., Marusic, I. & Sandberg, R.D. 2023 High-fidelity computational study of roughness effects on high pressure turbine performance and heat transfer. Intl J. Heat Fluid Flow 101, 109134.10.1016/j.ijheatfluidflow.2023.109134CrossRefGoogle Scholar
Jelly, T.O., Ramani, A., Nugroho, B., Hutchins, N. & Busse, A. 2022 Impact of spanwise effective slope upon rough-wall turbulent channel flow. J. Fluid Mech. 951, A1.10.1017/jfm.2022.823CrossRefGoogle Scholar
Jones, L.E., Sandberg, R.D. & Sandham, N.D. 2008 Direct numerical simulations of forced and unforced separation bubbles on an airfoil at incidence. J. Fluid Mech. 602, 175207.10.1017/S0022112008000864CrossRefGoogle Scholar
Karniadakis, G.E., Israeli, M. & Orszag, S.A. 1991 High-order splitting methods for the incompressible Navier–Stokes equations. J. Comput. Phys. 97 (2), 414443.10.1016/0021-9991(91)90007-8CrossRefGoogle Scholar
Kellersmann, A., Weiler, S., Bode, C., Friedrichs, J., Stading, J. & Ramm, G. 2018 Surface roughness impact on low-pressure turbine performance due to operational deterioration. J. Engng Gas Turb. Power 140 (6), 062601.10.1115/1.4038246CrossRefGoogle Scholar
Lardeau, S., Leschziner, M. & Zaki, T. 2012 Large eddy simulation of transitional separated flow over a flat plate and a compressor blade. Flow Turbul. Combust. 88 (1-2), 1944.10.1007/s10494-011-9353-0CrossRefGoogle Scholar
Li, H.J. & Yang, Z.Y. 2019 Separated boundary layer transition under pressure gradient in the presence of free-stream turbulence. Phys. Fluids 31 (10), 104106.10.1063/1.5122889CrossRefGoogle Scholar
Ling, W.H., Gao, S., Wang, Z.H., Zeng, M., Huang, W.L. & Xi, G. 2024 Direct numerical simulation of boundary layer transition induced by roughness element in a low Reynolds number compressor blade. Phys. Fluids 36, 124109.10.1063/5.0239694CrossRefGoogle Scholar
Loiseau, J.C. 2014 Dynamics and global stability analysis of three-dimensional flows. school PhD thesis. Ecole nationale supérieure d’arts et métiers - ENSAM.Google Scholar
Loiseau, J.C., Robinet, J.C., Cherubini, S. & Leriche, E. 2014 Investigation of the roughness-induced transition: global stability analyses and direct numerical simulations. J. Fluid Mech. 760, 175211.10.1017/jfm.2014.589CrossRefGoogle Scholar
Ma, R. & Mahesh, K. 2022 Global stability analysis and direct numerical simulation of boundary layers with an isolated roughness element. J. Fluid Mech. 949, A12.10.1017/jfm.2022.749CrossRefGoogle Scholar
Ma, R. & Mahesh, K. 2023 Boundary layer transition due to distributed roughness: effect of roughness spacing. J. Fluid Mech. 977, A27.10.1017/jfm.2023.937CrossRefGoogle Scholar
Mahmoodi-jezeh, S.V. & Wang, B.C. 2020 Direct numerical simulation of turbulent flow through a ribbed square duct. J. Fluid Mech. 900, A18.10.1017/jfm.2020.452CrossRefGoogle Scholar
Moser, R.D. & Moin, P. 1987 The effects of curvature in wall-bounded turbulent flows. J. Fluid Mech. 175, 479510.10.1017/S0022112087000491CrossRefGoogle Scholar
Nakagawa, K., Tsukahara, T. & Ishida, T. 2023 DNS study on turbulent transition induced by an interaction between freestream turbulence and cylindrical roughness in swept flat-plate boundary layer, Aerospace-Basel 10 (2), 128.10.3390/aerospace10020128CrossRefGoogle Scholar
Nikuradse, J. 1933 Flow laws in raised tubes. Z. Verein. Deutsch. Ing. 77, 10751076.Google Scholar
o’Rourke, J. 1998 Computational Geometry in C. Cambridge University Press.10.1017/CBO9780511804120CrossRefGoogle Scholar
Pearson, K. 1916 Mathematical contributions to the theory of evolution. - XIX. Second supplement to a memoir on skew variation. Phil. Trans. R. Soc. Lond. 216, 429457.Google Scholar
Perry, A.E., Schofield, W.H. & Joubert, P.N. 1969 Rough wall turbulent boundary layers. J. Fluid Mech. 37 (2), 383413.10.1017/S0022112069000619CrossRefGoogle Scholar
Pirozzoli, S., Modesti, D., Orlandi, P. & Grasso, F. 2018 Turbulence and secondary motions in square duct flow. J. Fluid Mech. 840, 631655.10.1017/jfm.2018.66CrossRefGoogle Scholar
Puckert, D.K. & Rist, U. 2018 Experiments on critical Reynolds number and global instability in roughness-induced laminar-turbulent transition. J. Fluid Mech. 844, 878904.10.1017/jfm.2018.211CrossRefGoogle Scholar
Radi, A. & Fasel, H. 2010 Experimental investigation of Laminar Separation Bubbles on a flat plate. In 40th Fluid Dynamics Conference and Exhibit. AIAA.10.2514/6.2010-4482CrossRefGoogle Scholar
Rao, V.N., Jefferson-Loveday, R., Tucker, P.G. & Lardeau, S. 2014 Large eddy simulations in turbines: influence of roughness and free-stream turbulence. Flow Turbul. Combust. 92, 543561.10.1007/s10494-013-9465-9CrossRefGoogle Scholar
Sandberg, R.D. & Sandham, N.D. 2006 Nonreflecting zonal characteristic boundary condition for direct numerical simulation of aerodynamic sound. AIAA J. 44, 402405.10.2514/1.19169CrossRefGoogle Scholar
Schmid, P.J. 2010 Dynamic mode decomposition of numerical and experimental data. J. Fluid Mech. 656, 528.10.1017/S0022112010001217CrossRefGoogle Scholar
Seddighi, M., He, S., Pokrajac, D., O’Donoghue, T. & Vardy, A.E. 2015 Turbulence in a transient channel flow with a wall of pyramid roughness. J. Fluid Mech. 781, 226260.10.1017/jfm.2015.488CrossRefGoogle Scholar
Sewall, E.A., Tafti, D.K., Graham, A.B. & Thole, K.A. 2006 Experimental validation of large eddy simulations of flow and heat transfer in a stationary ribbed duct. Intl J. Heat Fluid Flow 27 (2), 243258.10.1016/j.ijheatfluidflow.2005.08.010CrossRefGoogle Scholar
Shahinfar, S., Fransson, J.H.M., Sattarzadeh, S.S. & Talamelli, A. 2013 Scaling of streamwise boundary layer streaks and their ability to reduce skin-friction drag. J. Fluid Mech. 733, 132.10.1017/jfm.2013.431CrossRefGoogle Scholar
Shishkina, O. & Wagner, C. 2011 Modelling the influence of wall roughness on heat transfer in thermal convection. J. Fluid Mech. 686, 568582.10.1017/jfm.2011.348CrossRefGoogle Scholar
Sivaramakrishnan Malathi, A., Nardini, M., Vaid, A., Rao Vadlamani, N. & Sandberg, R.D. 2022 Profile loss reduction of high-lift turbine blades with rough and ribbed surfaces. J. Turbomach. 145, 021001.10.1115/1.4055501CrossRefGoogle Scholar
Spalart, P.R. & Strelets, M.K. 2000 Mechanisms of transition and heat transfer in a separation bubble. J. Fluid Mech. 403, 329349.10.1017/S0022112099007077CrossRefGoogle Scholar
Stroh, A., Schafer, K., Frohnapfel, B. & Forooghi, P. 2020 Rearrangement of secondary flow over spanwise heterogeneous roughness. J. Fluid Mech. 885, R5.10.1017/jfm.2019.1030CrossRefGoogle Scholar
Taira, K., Hemati, M.S., Brunton, S.L., Sun, Y.Y., Duraisamy, K., Bagheri, S., Dawson, S.T.M. & Yeh, C.A. 2020 Modal analysis of fluid flows: applications and outlook. AIAA J. 58 (3), 9981022.10.2514/1.J058462CrossRefGoogle Scholar
Vaid, A., Vadlamani, N.R., Malathi, A.S. & Gupta, V. 2022 Dynamics of bypass transition behind roughness element subjected to pulses of free-stream turbulence. Phys. Fluids 34 (11), 114110.10.1063/5.0120241CrossRefGoogle Scholar
Vaughan, N.J. & Zaki, T.A. 2011 Stability of zero-pressure-gradient boundary layer distorted by unsteady Klebanoff streaks. J. Fluid Mech. 681, 116153.10.1017/jfm.2011.177CrossRefGoogle Scholar
Volino, R.J., Schultz, M.P. & Flack, K.A. 2009 Turbulence structure in a boundary layer with two-dimensional roughness. J. Fluid Mech. 635, 75101.10.1017/S0022112009007617CrossRefGoogle Scholar
von Deyn, L.H., Forooghi, P., Frohnapfel, B., Schlatter, P., Hanifi, A. & Henningson, D.S. 2020 Direct numerical simulations of bypass transition over distributed roughness. AIAA J. 58 (2), 702711.10.2514/1.J057765CrossRefGoogle Scholar
Wang, M.Y., Lu, X.G., Yang, C.W., Zhao, S.F. & Zhang, Y.F. 2021 a Numerical investigation of distributed roughness effects on separated flow transition over a highly loaded compressor blade. Phys. Fluids 33, 114104.10.1063/5.0066615CrossRefGoogle Scholar
Wang, M.Y., Yang, C.W., Li, Z.L., Zhao, S.F., Zhang, Y.F. & Lu, X.G. 2021b Effects of surface roughness on the aerodynamic performance of a high subsonic compressor airfoil at low Reynolds number. Chinese J. Aeronaut. 34 (3), 7181.10.1016/j.cja.2020.08.020CrossRefGoogle Scholar
Wang, S.Y., Ge, M.M., Deng, X.G., Yu, Q.Y. & Wang, G.X. 2019 Blending of algebraic transition model and subgrid model for separated transitional flows. AIAA J. 57 (11), 46844697.10.2514/1.J058313CrossRefGoogle Scholar
Wang, Z.Q. & Cheng, N.S. 2006 Time-mean structure of secondary flows in open channel with longitudinal bedforms. Adv. Water Res. 29 (11), 16341649.10.1016/j.advwatres.2005.12.002CrossRefGoogle Scholar
Weingärtner, A., Mamidala, S.B. & Fransson, J.H.M. 2023 Instabilities in the wake of an isolated cylindrical roughness element. J. Fluid Mech. 960, A8.10.1017/jfm.2023.171CrossRefGoogle Scholar
Wissink, J. & Rodi, W. 2004 ERCOFTAC Series. Ercoftac Ser. 9, 213220.10.1007/978-1-4020-2313-2_23CrossRefGoogle Scholar
Yang, G.Q., Li, B.T., Wang, Y. & Hong, J. 2014 Numerical simulation of 3D rough surfaces and analysis of interfacial contact characteristics, Cmes-Comput. Model Engng 103 (4), 251279.Google Scholar
Yang, J.M. 2016 Sharp interface direct forcing immersed boundary methods: a summary of some algorithms and applications. J. Hydrodyn 28 (5), 713730.Google Scholar
Yang, J.M. & Balaras, E. 2006 An embedded-boundary formulation for large-eddy simulation of turbulent flows interacting with moving boundaries. J. Comput. Phys 215 (1), 1240.10.1016/j.jcp.2005.10.035CrossRefGoogle Scholar
Yang, J., Stroh, A., Chung, D. & Forooghi, P. 2022 Direct numerical simulation-based characterization of pseudo-random roughness in minimal channels. J. Fluid Mech. 941, A47.10.1017/jfm.2022.331CrossRefGoogle Scholar
Yang, X.I.A., Sadique, J., Mittal, R. & Meneveau, C. 2016 Exponential roughness layer and analytical model for turbulent boundary layer flow over rectangular-prism roughness elements. J. Fluid Mech. 789, 127165.10.1017/jfm.2015.687CrossRefGoogle Scholar
Zaki, T.A., Wissink, J.G., Rodi, W. & Durbin, P.A. 2010 Direct numerical simulations of transition in a compressor cascade: the influence of free-stream turbulence. J. Fluid Mech. 665, 5798.10.1017/S0022112010003873CrossRefGoogle Scholar
Zhang, X.F. & Hodson, H.P. 2006 Unsteady aerodynamics, aeroacoustics and aeroelasticity of turbomachines. Springer Netherlands.Google Scholar
Zoppini, G., Ragni, D. & Kotsonis, M. 2022 Transition due to isolated roughness in a swept wing boundary layer. Phys. Fluids 34 (8), 084113.10.1063/5.0101187CrossRefGoogle Scholar