Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-12T09:36:23.703Z Has data issue: false hasContentIssue false

Internal wave focusing by a horizontally oscillating torus

Published online by Cambridge University Press:  26 January 2017

E. V. Ermanyuk
Affiliation:
Laboratoire des Écoulements Géophysiques et Industriels, CNRS–Université Grenoble Alpes, BP 53, 38041 Grenoble, France Lavrentyev Institute of Hydrodynamics, Siberian Branch of the Russian Academy of Science, Prospekt Lavrentyeva 15, Novosibirsk 630090, Russia Novosibirsk State University, Pirogova str. 2, Novosibirsk 630090, Russia
N. D. Shmakova
Affiliation:
Laboratoire des Écoulements Géophysiques et Industriels, CNRS–Université Grenoble Alpes, BP 53, 38041 Grenoble, France
J.-B. Flór*
Affiliation:
Laboratoire des Écoulements Géophysiques et Industriels, CNRS–Université Grenoble Alpes, BP 53, 38041 Grenoble, France
*
Email address for correspondence: jan-bert.flor@legi.cnrs.fr

Abstract

This paper presents an experimental study on internal waves emitted by a horizontally oscillating torus in a linearly stratified fluid. Two internal wave cones are generated with the kinetic energy focused at the apices of the cones above and below the torus where the wave amplitude is maximal. Their motion is measured via tracking of distortions of horizontal fluorescein dye planes created prior to the experiments and illuminated by a vertical laser sheet. The distortion of the dye planes gives a direct access to the Lagrangian displacement of local wave amplitudes and slopes, and in particular, allows us to calculate a local Richardson number. In addition particle image velocimetry measurements are used. Maximum wave slopes are found in the focal region and close to the surface of the torus. As the amplitude of oscillations of the torus increases, wave profiles in the regions of maximum wave slopes evolve nonlinearly toward local overturning. A theoretical approximation based on the theory of Hurley & Keady (J. Fluid Mech., vol. 351, 1997, pp. 119–138) is presented and shows, for small amplitudes of oscillation, a very reasonable agreement with the experimental data. For the focal region the internal wave amplitude is found to be overestimated by the theory. The wave breaking in the focal region is investigated as a function of the Keulegan–Carpenter number, $Ke=A/a$, with $A$ the oscillation amplitude and $a$ the short radius of the torus. A linear wave regime is found for $Ke<0.4$, nonlinear effects start at $Ke\approx 0.6$ and breaking for $Ke>0.8$. For large forcing, the measured wave amplitude normalized with the oscillation amplitude decreases almost everywhere in the wave field, but increases locally in the focal region due to nonlinear effects. Due to geometric focusing the amplitude of the wave increases with $\sqrt{\unicode[STIX]{x1D716}}$, with $\unicode[STIX]{x1D716}=b/a$ and $b$ is the mean radius of the torus. The relevance of wave focusing due to ocean topography is discussed.

Type
Papers
Copyright
© 2017 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bell, T. H. 1975 Lee waves in stratified flows with simple harmonic time dependance. J. Fluid Mech. 67, 705722.Google Scholar
Bühler, O. 2009 Waves and Mean Flows. Cambridge University Press.Google Scholar
Bühler, O. & Muller, C. J. 2007 Instability and focusing of internal tides in the deep ocean. J. Fluid Mech. 588, 128.Google Scholar
Dale, A. C. & Inall, M. E. 2015 Tidal mixing processes amid small-scale, deep-ocean topography. Geophys. Res. Lett. 42, 484491.CrossRefGoogle Scholar
Dauxois, T. & Young, W. R. 1999 Near-critical reflection of internal waves. J. Fluid Mech. 390, 271295.Google Scholar
Duran-Matute, M., Flór, J.-B., Godeferd, F. S. & Jause-Labert, C. 2013 Turbulence and columnar vortex formation through inertial-wave focusing. Phys. Rev. E 87, 041001(R).Google Scholar
Echeverri, P., Yokossi, T., Balmforth, N. J. & Peacock, T. 2011 Tidally generated internal-wave attractors between double ridges. J. Fluid Mech. 669, 354374.Google Scholar
Ermanyuk, E. V. 2000 The use of impulse response functions for evaluation of added mass and damping coefficient of a circular cylinder oscillating in linearly stratified fluid. Exp. Fluids 28, 152159.Google Scholar
Ermanyuk, E. V., Flór, J.-B. & Voisin, B. 2011 Spatial structure of first and higher harmonic internal waves from a horizontally oscillating sphere. J. Fluid Mech. 671, 364383.Google Scholar
Ermanyuk, E. V. & Gavrilov, N. V. 2002 Force on a body in a continuously stratified fluid. Part 1. Circular cylinder. J. Fluid Mech. 451, 421443.CrossRefGoogle Scholar
Ermanyuk, E. V. & Gavrilov, N. V. 2005 Duration of transient processes in the formation of internal-wave beams. Dokl. Akad. Nauk 404, 771774.Google Scholar
Ermanyuk, E. V. & Gavrilov, N. V. 2008 On internal waves generated by large-amplitude circular and rectilinear oscillations of a circular cylinder in a uniformly stratified fluid. J. Fluid Mech. 613, 329356.Google Scholar
Ferrari, R. & Wunsch, C. 2008 Ocean circulation kinetic energy: reservoirs, sources, and sinks. Annu. Rev. Fluid Mech. 41, 253282.Google Scholar
Fincham, A. & Delerce, G. 2000 Advanced optimization of correlation imaging velocimetry algorithms. Exp. Fluids 29, S013S022.Google Scholar
Flór, J.-B., Ungarish, M. & Bush, J. W. M. 2002 Spin-up from rest in a stratified fluid: boundary flows. J. Fluid Mech. 472, 5182.Google Scholar
Flynn, M. R., Onu, K. & Sutherland, B. R. 2003 Internal wave excitation by a vertically oscillating sphere. J. Fluid Mech. 494, 6593.Google Scholar
Garrett, C. & Kunze, E. 2007 Internal tide generation in the deep ocean. Annu. Rev. Fluid Mech. 39, 5787.Google Scholar
Gayen, B. & Sarkar, S. 2010 Turbulence during the generation of internal tide on a critical slope. Phys. Rev. Lett. 104, 218502.Google Scholar
Grisouard, N. & Bühler, O. 2012 Forcing of oceanic mean flows by dissipating internal tides. J. Fluid Mech. 708, 250278.CrossRefGoogle Scholar
Guo, Y. & Holmes-Cerfon, M. 2016 Internal wave attractors over random, small-amplitude topography. J. Fluid Mech. 787, 148174.Google Scholar
Hopfinger, E. J., Flór, J.-B., Chomaz, J. M. & Bonneton, P. 1991 Internal waves generated by a moving sphere and its wake in a stratified fluid. Exp. Fluids 11, 255261.Google Scholar
Hurley, D. G. 1997 The generation of internal waves by vibrating elliptic cylinders. Part 1. Inviscid solution. J. Fluid Mech. 351, 105118.Google Scholar
Hurley, D. G. & Keady, G. 1997 The generation of internal waves by vibrating elliptic cylinders. Part 2. Approximate viscous solution. J. Fluid Mech. 351, 119138.Google Scholar
King, B., Zhang, H. P. & Swinney, H. L. 2009 Tidal flow over three-dimensional topography in a stratified fluid. Phys. Fluids 21, 116601.Google Scholar
King, B., Zhang, H. P. & Swinney, H. L. 2010 Tidal flow over three-dimensional topography generates out-of-forcing-plane harmonics. Geophys. Res. Lett. 37, L14606.CrossRefGoogle Scholar
Llewellyn Smith, S. G. & Young, W. R. 2002 Conversion of the barotropic tide. J. Phys. Oceanogr. 32, 15541566.Google Scholar
Llewellyn Smith, S. G. & Young, W. R. 2003 Tidal conversion at a very steep ridge. J. Fluid Mech. 495, 175191.Google Scholar
Maas, L. R. M. 2011 Topographies lacking tidal conversion. J. Fluid Mech. 684, 524.Google Scholar
Maas, L. R. M., Benielli, D., Sommeria, J. & Lam, F.-P. A. 1997 Observation of an internal wave attractor in a confined, stably stratified fluid. Nature 388, 557561.Google Scholar
Mathur, M. & Peacock, T. 2009 Internal wave beam propagation in non-uniform stratifications. J. Fluid Mech. 639, 133152.Google Scholar
Miles, J. W. 1961 On the stability of heterogeneous shear flows. J. Fluid Mech. 10, 496508.Google Scholar
Morozov, E. G. 1995 Semidiurnal internal wave global field. Deep-Sea Res. I 42, 135148.Google Scholar
Mowbray, D. E. & Rarity, B. S. H. 1967 A theoretical and experimental investigation of the phase configuration of internal waves of small amplitude in a density stratified liquid. J. Fluid Mech. 28, 116.Google Scholar
Newman, J. N. 1977a Marine Hydrodynamics. MIT Press.Google Scholar
Newman, J. N. 1977b The motions of a floating slender torus. J. Fluid Mech. 83, 721735.Google Scholar
Scolan, H., Ermanyuk, E. & Dauxois, T. 2013 Nonlinear fate of internal wave attractors. Phys. Rev. Lett. 110, 234501.Google Scholar
Sutherland, B. R., Dalziel, S. B., Hughes, G. O. & Linden, P. F. 1999 Visualization and measurement of internal waves by ‘synthetic schlieren’. Part 1. Vertically oscillating cylinder. J. Fluid Mech. 390, 93126.Google Scholar
Sutherland, B. R., Hughes, G. O., Dalziel, S. B. & Linden, P. F. 2000 Internal waves revisited. Dyn. Atmos. Oceans 31, 209232.Google Scholar
Sutherland, B. R. & Linden, P. F. 2002 Internal wave excitation by a vertically oscillating elliptical cylinder. Phys. Fluids 14, 721731.Google Scholar
Teoh, S. G., Ivey, G. N. & Imberger, J. 1997 Laboratory study of the interaction between two internal wave rays. J. Fluid Mech. 336, 91122.Google Scholar
Vlasenko, V., Stashchuk, N. & Hutter, K. 2005 Baroclinic Tides: Theoretical Modeling and Observational Evidence. Cambridge University Press.Google Scholar
Vlasenko, V., Stashchuk, N., Inall, M. E., Porter, M. & Aleynik, D. 2016 Focusing of baroclinic tidal energy in a canyon. J. Geophys. Res. Oceans 121, 28242840.Google Scholar
Voisin, B. 2003 Limit states of internal wave beams. J. Fluid Mech. 496, 243293.CrossRefGoogle Scholar
Voisin, B., Ermanyuk, E. V. & Flór, J.-B. 2011 Internal wave generation by oscillation of a sphere, with application to internal tides. J. Fluid Mech. 666, 308357.Google Scholar
Westerweel, J. 1997 Fundamentals of digital particle image velocimetry. Meas. Sci. Technol. 8, 13791392.Google Scholar
Wunsch, C. & Ferrari, R. 2004 Vertical mixing, energy, and the general circulation of the oceans. Annu. Rev. Fluid Mech. 36, 281314.Google Scholar
Xing, J. & Davies, A. M. 2011 On the interaction of internal tides over two adjacent sills in a fjord. J. Geophys. Res. 116, C04022.Google Scholar
Zhang, H. P., King, B. & Swinney, H. L. 2007 Experimental study of internal gravity waves generated by supercritical topography. Phys. Fluids 19, 096602.Google Scholar
Zhang, L. & Swinney, H. L. 2014 Virtual seafloor reduces internal wave generation by tidal flow. Phys. Rev. Lett. 112, 104502.Google Scholar