Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-26T23:20:10.234Z Has data issue: false hasContentIssue false

Interactions of internal tides with a heterogeneous and rotational ocean

Published online by Cambridge University Press:  10 June 2021

Yulin Pan
Affiliation:
Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA02139, USA
Patrick J. Haley
Affiliation:
Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA02139, USA
Pierre F.J. Lermusiaux*
Affiliation:
Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA02139, USA
*
Email address for correspondence: pierrel@mit.edu

Abstract

We consider the interactions of internal tides (ITs) with a dynamic, rotational and heterogeneous ocean, and spatially varying topography. The IT fields are expanded using vertical modal basis functions, whose amplitudes vary horizontally and temporally. We obtain the evolution equations of modal amplitudes and energy including simultaneous three-way interactions with the mean flow, buoyancy and topography. We apply these equations to a set of idealized and two realistic data-assimilative primitive equation simulations. These simulations reveal that significant interactions of ITs with the background fields occur at topographic features and strong currents, in particular when the scales of the background and ITs are similar. In local hot spots, the new three-way interaction terms, when compared to the total modal conversion, are found to reach up to 10 %–30 % at steep topography and approximately 50 % in the Gulf Stream. We provide a dimensional analysis to guide the diagnosis of such strong interactions. When IT interactions are with a large-scale barotropic current (without topographic effects), our modal energy equation reduces to the conservation of modal wave action under a Wentzel–Kramers–Brillouin consideration. We further derive analytical solutions of the modulation of wavenumber and energy of an IT propagating into a collinear current. For ITs propagating along the flow direction, the wavelength is stretched and the amplitude is reduced, with the degree of modulation determined by $|\,f/\omega _0|$, the ratio of inertial to tidal frequencies. For ITs propagating opposite to the flow direction, a critical value of $|\,f/\omega _0|$ exists, below and above which the waves show remarkably different behaviours. The critical opposing current speed which triggers the wave focusing/blocking phenomenon is obtained and its implication for the propagation and dissipation of ITs is discussed.

Type
JFM Papers
Copyright
© The Author(s), 2021. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Agarwal, A. & Lermusiaux, P.F.J. 2011 Statistical field estimation for complex coastal regions and archipelagos. Ocean Model. 40 (2), 164189.CrossRefGoogle Scholar
Alford, M.H. & Zhao, Z. 2007 Global patterns of low-mode internal-wave propagation. Part I: energy and energy flux. J. Phys. Oceanogr. 37 (7), 18291848.CrossRefGoogle Scholar
Beardsley, R.C., Boicourt, W.C. & Hansen, D.V. 1976 Physical oceanography of the Middle Atlantic Bight. In Collected Reprints (ed. H.B. Stewart, Jr.), vol. I, pp. 34–48. Atlantic Oceanographic and Meteorological Laboratories, NOAA.Google Scholar
Bretherton, F.P. & Garrett, C.J.R. 1968 Wavetrains in inhomogeneous moving media. In Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, vol. 302, pp. 529–554. The Royal Society.CrossRefGoogle Scholar
Buijsman, M.C., Arbic, B.K., Richman, J.G., Shriver, J.F., Wallcraft, A.J. & Zamudio, L. 2017 Semidiurnal internal tide incoherence in the equatorial pacific. J. Geophys. Res. Oceans 122 (7), 52865305.CrossRefGoogle Scholar
Chapman, N.R. & Lynch, J.F. 2010 Editorial: special issue on the 2006 shallow water experiment. IEEE J. Ocean. Engng 35 (1), 12.CrossRefGoogle Scholar
Chavanne, C., Flament, P., Luther, D. & Gurgel, K.W. 2010 The surface expression of semidiurnal internal tides near a strong source at hawaii. Part II: interactions with mesoscale currents. J. Phys. Oceanogr. 40 (6), 11801200.CrossRefGoogle Scholar
Colin, M.E.G.D., et al. 2013 Time-evolving acoustic propagation modeling in a complex ocean environment. In OCEANS - Bergen, 2013 MTS/IEEE, pp. 1–9. IEEE.CrossRefGoogle Scholar
Colosi, J.A., Duda, T.F., Lin, Y.-T., Lynch, J.F., Newhall, A.E. & Cornuelle, B.D. 2012 Observations of sound-speed fluctuations on the New Jersey continental shelf in the summer of 2006. J. Acoust. Soc. Am. 131 (2), 17331748.CrossRefGoogle ScholarPubMed
Cossarini, G., Lermusiaux, P.F.J. & Solidoro, C. 2009 Lagoon of Venice ecosystem: seasonal dynamics and environmental guidance with uncertainty analyses and error subspace data assimilation. J. Geophys. Res. Oceans 114 (C6).CrossRefGoogle Scholar
Cummings, J.A. & Smedstad, O.M. 2013 Variational data assimilation for the global ocean. In Data Assimilation for Atmospheric, Oceanic and Hydrologic Applications (ed. S.K. Park & L. Xu), vol. II, pp. 303–343. Springer.CrossRefGoogle Scholar
Cushman-Roisin, B. & Beckers, J.-M. 2011 Introduction to Geophysical Fluid Dynamics: Physical and Numerical Aspects, vol. 101. Academic Press.Google Scholar
Duda, T.F., Lin, Y.-T., Buijsman, M. & Newhall, A.E. 2018 Internal tidal modal ray refraction and energy ducting in baroclinic Gulf Stream currents. J. Phys. Oceanogr. 48 (9), 19691993.CrossRefGoogle Scholar
Dunphy, M. & Lamb, K.G. 2014 Focusing and vertical mode scattering of the first mode internal tide by mesoscale eddy interaction. J. Geophys. Res. Oceans 119 (1), 523536.CrossRefGoogle Scholar
Dunphy, M., Ponte, A.L., Klein, P. & Le Gentil, S. 2017 Low-mode internal tide propagation in a turbulent eddy field. J. Phys. Oceanogr. 47 (3), 649665.CrossRefGoogle Scholar
Dushaw, B.D. 2002 Mapping low-mode internal tides near Hawaii using TOPEX/POSEIDON altimeter data. Geophys. Res. Lett. 29 (8), 91–1.CrossRefGoogle Scholar
Egbert, G.D. & Erofeeva, S.Y. 2002 Efficient inverse modeling of barotropic ocean tides. J. Atmos. Ocean. Technol. 19 (2), 183204.2.0.CO;2>CrossRefGoogle Scholar
Egbert, G.D. & Erofeeva, S.Y. 2013 TPXO8-ATLAS. http://volkov.oce.orst.edu/tides/tpxo8_atlas.html.Google Scholar
Falahat, S., Nycander, J., Roquet, F. & Zarroug, M. 2014 Global calculation of tidal energy conversion into vertical normal modes. J. Phys. Oceanogr. 44 (12), 32253244.CrossRefGoogle Scholar
Gangopadhyay, A., Lermusiaux, P.F.J., Rosenfeld, L., Robinson, A.R., Calado, L., Kim, H.S., Leslie, W.G. & Haley, P.J. Jr. 2011 The California current system: a multiscale overview and the development of a feature-oriented regional modeling system (FORMS). Dyn. Atmos. Oceans 52 (1–2), 131169. Special issue of Dynamics of Atmospheres and Oceans in honor of Prof. A. R. Robinson.CrossRefGoogle Scholar
Gangopadhyay, A., Robinson, A.R. & Arango, H.G. 1997 Circulation and dynamics of the Western North Atlantic. Part I: multiscale feature models. J. Atmos. Ocean. Technol. 14 (6), 13141332.2.0.CO;2>CrossRefGoogle Scholar
Gangopadhyay, A., Robinson, A.R., Haley, P.J., Leslie, W.G., Lozano, C.J., Bisagni, J.J. & Yu, Z. 2003 Feature-oriented regional modeling and simulations in the Gulf of Maine and Georges Bank. Cont. Shelf Res. 23 (3–4), 317353.CrossRefGoogle Scholar
Garrett, C. 2003 Internal tides and ocean mixing. Science 301 (5641), 18581859.Google ScholarPubMed
Garrett, C. & Kunze, E. 2007 Internal tide generation in the deep ocean. Annu. Rev. Fluid Mech. 39, 5787.CrossRefGoogle Scholar
Gill, A.E. & Clarke, A.J. 1974 Wind-induced upwelling, coastal currents and sea-level changes. In Deep Sea Research and Oceanographic Abstracts, vol. 21, pp. 325–345. Elsevier.CrossRefGoogle Scholar
Griffiths, S.D. & Grimshaw, R.H.J. 2007 Internal tide generation at the continental shelf modeled using a modal decomposition: two-dimensional results. J. Phys. Oceanogr. 37 (3), 428451.CrossRefGoogle Scholar
Grisouard, N. & Bühler, O. 2012 Forcing of oceanic mean flows by dissipating internal tides. J. Fluid Mech. 708, 250.CrossRefGoogle Scholar
Gupta, A., Haley, P.J., Subramani, D.N. & Lermusiaux, P.F.J. 2019 Fish modeling and Bayesian learning for the Lakshadweep Islands. In Oceans 2019 MTS/IEEE Seattle, pp. 1–10. IEEE.CrossRefGoogle Scholar
Haley, P.J. Jr., Agarwal, A. & Lermusiaux, P.F.J. 2015 Optimizing velocities and transports for complex coastal regions and archipelagos. Ocean Model. 89, 128.CrossRefGoogle Scholar
Haley, P.J. Jr. & Lermusiaux, P.F.J. 2010 Multiscale two-way embedding schemes for free-surface primitive equations in the “Multidisciplinary Simulation, Estimation and Assimilation System”. Ocean Dyn. 60 (6), 14971537.CrossRefGoogle Scholar
Haley, P.J. Jr., et al. 2009 Forecasting and reanalysis in the Monterey Bay/California current region for the autonomous ocean sampling network-II experiment. Deep Sea Res. II 56 (3–5), 127148.CrossRefGoogle Scholar
Huang, X., Wang, Z., Zhang, Z., Yang, Y., Zhou, C., Yang, Q., Zhao, W. & Tian, J. 2018 Role of mesoscale eddies in modulating the semidiurnal internal tide: observation results in the Northern South China Sea. J. Phys. Oceanogr. 48 (8), 17491770.CrossRefGoogle Scholar
Johnston, T.M.S., et al. 2019 a Energy and momentum lost to wake eddies and lee waves generated by the north equatorial current and tidal flows at Peleliu, Palau. Oceanography 32 (4), 110125.CrossRefGoogle Scholar
Johnston, T.M.S., et al. 2019 b Flow encountering abrupt topography (FLEAT): a multiscale observational and modeling program to understand how topography affects flows in the Western North Pacific. Oceanography 32 (4), 1021.CrossRefGoogle Scholar
Kafiabad, H., Savva, M.A.C. & Vanneste, J. 2019 Diffusion of inertia-gravity waves by geostrophic turbulence (preprint) arXiv:1902.03997.CrossRefGoogle Scholar
Kang, D. & Fringer, O. 2010 On the calculation of available potential energy in internal wave fields. J. Phys. Oceanogr. 40 (11), 25392545.CrossRefGoogle Scholar
Kelly, S.M. 2016 The vertical mode decomposition of surface and internal tides in the presence of a free surface and arbitrary topography. J. Phys. Oceanogr. 46 (12), 37773788.CrossRefGoogle Scholar
Kelly, S.M., Jones, N.L., Nash, J.D. & Waterhouse, A.F. 2013 The geography of semidiurnal mode-1 internal-tide energy loss. Geophys. Res. Lett. 40 (17), 46894693.CrossRefGoogle Scholar
Kelly, S.M. & Lermusiaux, P.F.J. 2016 Internal-tide interactions with Gulf Stream and Middle Atlantic Bight shelfbreak front. J. Geophys. Res. Oceans 121, 62716294.CrossRefGoogle Scholar
Kelly, S.M., Lermusiaux, P.F.J., Duda, T.F. & Haley, P.J. Jr. 2016 A coupled-mode shallow water model for tidal analysis: internal-tide reflection and refraction by the Gulf Stream. J. Phys. Oceanogr. 46, 36613679.CrossRefGoogle Scholar
Kulkarni, C.S., et al. 2018 Real-time sediment plume modeling in the Southern California Bight. In OCEANS Conference 2018. IEEE.CrossRefGoogle Scholar
Kunze, E. 1985 Near-inertial wave propagation in geostrophic shear. J. Phys. Oceanogr. 15 (5), 544565.2.0.CO;2>CrossRefGoogle Scholar
de Lavergne, C., Falahat, S., Madec, G., Roquet, F., Nycander, J. & Vic, C. 2019 Toward global maps of internal tide energy sinks. Ocean Model. 137, 5275.CrossRefGoogle Scholar
Lermusiaux, P.F.J. 1999 Data assimilation via error subspace statistical estimation, part II: Mid-Atlantic Bight shelfbreak front simulations, and ESSE validation. Mon. Weath. Rev. 127 (7), 14081432.2.0.CO;2>CrossRefGoogle Scholar
Lermusiaux, P.F.J. 2001 Evolving the subspace of the three-dimensional multiscale ocean variability: Massachusetts Bay. J. Mar. Syst. 29 (1), 385422.CrossRefGoogle Scholar
Lermusiaux, P.F.J. 2006 Uncertainty estimation and prediction for interdisciplinary ocean dynamics. J. Comput. Phys. 217 (1), 176199.CrossRefGoogle Scholar
Lermusiaux, P.F.J. 2007 Adaptive modeling, adaptive data assimilation and adaptive sampling. Phys. D Nonlinear Phenom. 230 (1), 172196.CrossRefGoogle Scholar
Lermusiaux, P.F.J., et al. 2017 Optimal planning and sampling predictions for autonomous and Lagrangian platforms and sensors in the northern Arabian Sea. Oceanography 30 (2), 172185, special issue on Autonomous and Lagrangian Platforms and Sensors (ALPS).CrossRefGoogle Scholar
Lermusiaux, P.F.J., et al. 2019 Plastic pollution in the coastal oceans: characterization and modeling. In Oceans 2019 MTS/IEEE Seattle, pp. 1–10. IEEE.CrossRefGoogle Scholar
Lermusiaux, P.F.J., Haley, P.J. Jr., Leslie, W.G., Logoutov, O. & Robinson, A.R. 2006 Autonomous wide aperture cluster for surveillance (AWACS): adaptive sampling and search using predictive models with coupled data assimilation and feedback. http://mseas.mit.edu/archive/AWACS/index_AWACS.html.Google Scholar
Lermusiaux, P.F.J., Haley, P.J. Jr. & Yilmaz, N.K. 2007 Environmental prediction, path planning and adaptive sampling: sensing and modeling for efficient ocean monitoring, management and pollution control. Sea Technol. 48 (9), 3538.Google Scholar
Lermusiaux, P.F.J. & Robinson, A.R. 1999 Data assimilation via error subspace statistical estimation, part I: theory and schemes. Mon. Weath. Rev. 127 (7), 13851407.2.0.CO;2>CrossRefGoogle Scholar
Leslie, W.G., Robinson, A.R., Haley, P.J. Jr., Logutov, O., Moreno, P.A., Lermusiaux, P.F.J. & Coelho, E. 2008 Verification and training of real-time forecasting of multi-scale ocean dynamics for maritime rapid environmental assessment. J. Mar. Syst. 69 (1), 316.CrossRefGoogle Scholar
Li, Q., Mao, X., Huthnance, J., Cai, S. & Kelly, S. 2019 On internal waves propagating across a geostrophic front. J. Phys. Oceanogr. 49 (5), 12291248.CrossRefGoogle Scholar
Lin, Y.-T., Newhall, A.E., Duda, T.F., Lermusiaux, P.F.J. & Haley, P.J. 2010 Merging multiple-partial-depth data time series using objective empirical orthogonal function fitting. IEEE J. Ocean. Engng 35 (4), 710721.CrossRefGoogle Scholar
Logutov, O.G. & Lermusiaux, P.F.J. 2008 Inverse barotropic tidal estimation for regional ocean applications. Ocean Model. 25 (1–2), 1734.CrossRefGoogle Scholar
Longuet-Higgins, M.S. & Stewart, R.W. 1960 Changes in the form of short gravity waves on long waves and tidal currents. J. Fluid Mech. 8 (04), 565583.CrossRefGoogle Scholar
Longuet-Higgins, M.S. & Stewart, R.W. 1961 The changes in amplitude of short gravity waves on steady non-uniform currents. J. Fluid Mech. 10 (4), 529549.CrossRefGoogle Scholar
Lynch, J. & Tang, D. 2008 Overview of shallow water 2006 JASA EL special issue papers. J. Acoust. Soc. Am. 124 (3), EL63EL65.CrossRefGoogle ScholarPubMed
MacKinnon, J.A., Alford, M.H., Voet, G., Zeiden, K.L., Shaun Johnston, T.M., Siegelman, M., Merrifield, S. & Merrifield, M. 2019 Eddy wake generation from broadband currents near Palau. J. Geophys. Res. Oceans 124 (7), 48914903.CrossRefGoogle Scholar
Mei, C.C., Stiassnie, M. & Yue, D.K.-P. 1989 Theory and Applications of Ocean Surface Waves: Part 1: Linear Aspects Part 2: Nonlinear Aspects. World Scientific.Google Scholar
Muller, P. 1976 On the diffusion of momentum and mass by internal gravity waves. J. Fluid Mech. 77 (4), 789823.Google Scholar
Nash, J.D., Kunze, E., Lee, C.M. & Sanford, T.B. 2006 Structure of the baroclinic tide generated at Kaena Rridge, Hawaii. J. Phys. Oceanogr. 36 (6), 11231135.CrossRefGoogle Scholar
Nash, J.D., Shroyer, E.L., Kelly, S.M., Inall, M.E., Duda, T.F., Levine, M.D., Jones, N.L. & Musgrave, R.C. 2012 Are any coastal internal tides predictable? Oceanography 25 (2), 8095.CrossRefGoogle Scholar
National Centers for Environmental Prediction (NCEP) 2019 Global forecast system. https://www.nco.ncep.noaa.gov/pmb/products/gfs/.Google Scholar
National Marine Fisheries Service 2019 Hydrographic conditions of the northeast continental shelf. https://www.nefsc.noaa.gov/HydroAtlas/.Google Scholar
National Oceanic and Atmospheric Administration 2020 Navy operational global atmospheric prediction system (NOGAPS). https://www.ncdc.noaa.gov/data-access/model-data/model-datasets/navy-operational-global-atmospheric-prediction-system.Google Scholar
Newhall, A.E., et al. 2007 Acoustic and oceanographic observations and configuration information for the WHOI moorings from the SW06 experiment. Tech Rep. 2007-04. Woods Hole Oceanographic Institution.CrossRefGoogle Scholar
Olbers, D.J. 1981 a A formal theory of internal wave scattering with applications to ocean fronts. J. Phys. Oceanogr. 11 (8), 10781099.2.0.CO;2>CrossRefGoogle Scholar
Olbers, D.J. 1981 b The propagation of internal waves in a geostrophic current. J. Phys. Oceanogr. 11 (9), 12241233.2.0.CO;2>CrossRefGoogle Scholar
Onken, R., Álvarez, A., Fernández, V., Vizoso, G., Basterretxea, G., Tintoré, J., Haley, P. Jr. & Nacini, E. 2008 A forecast experiment in the Balearic Sea. J. Mar. Syst. 71 (1–2), 7998.CrossRefGoogle Scholar
Peregrine, D.H. 1976 Interaction of water waves and currents. Adv. Appl. Mech. 16, 9117.CrossRefGoogle Scholar
Rainville, L. & Pinkel, R. 2006 Propagation of low-mode internal waves through the ocean. J. Phys. Oceanogr. 36 (6), 12201236.CrossRefGoogle Scholar
Ramp, S.R., Lermusiaux, P.F.J., Shulman, I., Chao, Y., Wolf, R.E. & Bahr, F.L. 2011 Oceanographic and atmospheric conditions on the continental shelf north of the Monterey Bay during August 2006. Dyn. Atmos. Oceans 52 (1–2), 192223. Special issue of Dynamics of Atmospheres and Oceans in honor of Prof. A. R. Robinson.CrossRefGoogle Scholar
Ray, R.D. & Mitchum, G.T. 1996 Surface manifestation of internal tides generated near Hawaii. Geophys. Res. Lett. 23 (16), 21012104.CrossRefGoogle Scholar
Rutgers Center for Ocean Observing Leadership 2020 RUWRF mesoscale meteorological model. https://rucool.marine.rutgers.edu/data/meteorological-modeling/ruwrf-mesoscale-meteorological-model-forecast/.Google Scholar
Salmon, R. 2016 Variational treatment of inertia–gravity waves interacting with a quasi-geostrophic mean flow. J. Fluid Mech. 809, 502529.CrossRefGoogle Scholar
Savva, M.A.C., Kafiabad, H.A. & Vanneste, J. 2020 Inertia-gravity-wave scattering by geostrophic turbulence (preprint) arXiv:2008.02203.CrossRefGoogle Scholar
Savva, M.A.C. & Vanneste, J. 2018 Scattering of internal tides by barotropic quasigeostrophic flows. J. Fluid Mech. 856, 504530.CrossRefGoogle Scholar
Shakespeare, C.J. & McC. Hogg, A. 2019 On the momentum flux of internal tides. J. Phys. Oceanogr. 49 (4), 9931013.CrossRefGoogle Scholar
Shyu, J.-H. & Phillips, O.M. 1990 The blockage of gravity and capillary waves by longer waves and currents. J. Fluid Mech. 217, 115141.CrossRefGoogle Scholar
Subramani, D.N., Lermusiaux, P.F.J., Haley, P.J. Jr., Mirabito, C., Jana, S., Kulkarni, C.S., Girard, A., Wickman, D., Edwards, J. & Smith, J. 2017 Time-optimal path planning: real-time sea exercises. In Oceans ’17 MTS/IEEE Conference. IEEE.CrossRefGoogle Scholar
Tang, D., et al. 2007 Shallow water ’06: a joint acoustic propagation/nonlinear internal wave physics experiment. Oceanography 20, 156167.CrossRefGoogle Scholar
Tian, J., Zhou, L. & Zhang, X. 2006 Latitudinal distribution of mixing rate caused by the m 2 internal tide. J. Phys. Oceanogr. 36 (1), 3542.CrossRefGoogle Scholar
Ueckermann, M.P. & Lermusiaux, P.F.J. 2010 High order schemes for 2D unsteady biogeochemical ocean models. Ocean Dyn. 60 (6), 14151445.CrossRefGoogle Scholar
Ueckermann, M.P. & Lermusiaux, P.F.J. 2016 Hybridizable discontinuous Galerkin projection methods for Navier–Stokes and Boussinesq equations. J. Comput. Phys. 306, 390421.CrossRefGoogle Scholar
Wagner, G.L., Ferrando, G. & Young, W.R. 2016 An asymptotic model for the propagation of oceanic internal tides through quasi-geostrophic flow (preprint) arXiv:1612.09009.CrossRefGoogle Scholar
Whitham, G.B. 1965 A general approach to linear and non-linear dispersive waves using a lagrangian. J. Fluid Mech. 22 (2), 273283.CrossRefGoogle Scholar
Wunsch, C. 1975 Internal tides in the ocean. Rev. Geophys. 13 (1), 167182.CrossRefGoogle Scholar
Xu, J., Lermusiaux, P.F.J., Haley, P.J. Jr., Leslie, W.G. & Logutov, O.G. 2008 Spatial and temporal variations in acoustic propagation during the PLUSNet-07 exercise in Dabob Bay. In Proceedings of Meetings on Acoustics (POMA), Acoustical Society of America 155th Meeting, vol. 4, p. 11. Acoustical Society of America.CrossRefGoogle Scholar
Zaron, E.D. & Egbert, G.D. 2014 Time-variable refraction of the internal tide at the Hawaiian ridge. J. Phys. Oceanogr. 44 (2), 538557.CrossRefGoogle Scholar
Zhang, W.G. & Duda, T.F. 2013 Intrinsic nonlinearity and spectral structure of internal tides at an idealized mid-atlantic bight shelf break. J. Phys. Oceanogr. 43 (12), 26412660.CrossRefGoogle Scholar
Zhang, W.G., Gawarkiewicz, G.G., McGillicuddy, D.J. & Wilkin, J.L. 2011 Climatological mean circulation at the New England shelf break. J. Phys. Oceanogr. 41 (10), 18741893.CrossRefGoogle Scholar
Zhao, Z. & Alford, M.H. 2009 New altimetric estimates of mode-1 m2 internal tides in the Central North Pacific Ocean. J. Phys. Oceanogr. 39 (7), 16691684.CrossRefGoogle Scholar