Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-12T09:17:05.883Z Has data issue: false hasContentIssue false

Interactions enhance the acoustic streaming around flattened microfluidic bubbles

Published online by Cambridge University Press:  26 May 2016

F. Mekki-Berrada*
Affiliation:
LIPhy, UMR 5588, CNRS, Université Grenoble-Alpes, 38401 Grenoble, France
T. Combriat
Affiliation:
LIPhy, UMR 5588, CNRS, Université Grenoble-Alpes, 38401 Grenoble, France
P. Thibault
Affiliation:
LIPhy, UMR 5588, CNRS, Université Grenoble-Alpes, 38401 Grenoble, France
P. Marmottant
Affiliation:
LIPhy, UMR 5588, CNRS, Université Grenoble-Alpes, 38401 Grenoble, France
*
Email address for correspondence: flore.mekki-berrada@espci.org

Abstract

The vibration of bubbles can produce intense microstreaming when excited by ultrasound near resonance. In order to study freely oscillating bubbles in steady conditions, we have confined bubbles between the two walls of a silicone microchannel and anchored them on micropits. We were thus able to analyse the microstreaming flow generated around an isolated bubble or a pair of interacting bubbles. In the case of an isolated bubble, a short-range microstreaming occurs in the channel gap, with additional in-plane vortices at high amplitude when Faraday waves are excited on the bubble periphery. For a pair of bubbles, we have observed long-range microstreaming and large recirculations describing a ‘butterfly’ pattern. We propose a model based on secondary acoustic Bjerknes forces mediated by Rayleigh waves on the silicone walls. These forces lead to attraction or repulsion of bubbles and thus to the excitation of a translational mode in addition to the breathing mode of the bubble. The mixed-mode streaming induced by the interaction of these two modes is shown to generate fountain or anti-fountain vortex pairs, depending on the relative distance between the bubbles.

Type
Papers
Copyright
© 2016 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abbyad, P., Dangla, R., Alexandrou, A. & Baroud, C. N. 2011 Rails and anchors: guiding and trapping droplet microreactors in two dimensions. Lab on a Chip 11, 813821.Google Scholar
Ahmed, D., Chan, C. Y., Lin, S. S., Muddana, H. S., Nama, N., Benkovic, S. J. & Huang, T. J. 2013 Tunable, pulsatile chemical gradient generation via acoustically driven oscillating bubbles. Lab on a Chip 13, 328331.CrossRefGoogle ScholarPubMed
Ahmed, D., Mao, X., Juluri, B. K. & Huang, T. J. 2009a A fast microfluidic mixer based on acoustically driven sidewall-trapped microbubbles. Microfluid. Nanofluid. 7 (5), 727731.Google Scholar
Ahmed, D., Mao, X., Shi, J., Juluri, B. K. & Huang, T. J. 2009b A millisecond micromixer via single-bubble-based acoustic streaming. Lab on a Chip 9, 27382741.Google Scholar
Barbat, T., Ashgriz, N. & Liu, C.-S. 1999 Dynamics of two interacting bubbles in an acoustic field. J. Fluid Mech. 389, 137168.Google Scholar
Bjerknes, V. 1906 Fields of Force. Columbia University Press.Google Scholar
Dangla, R., Lee, S. & Baroud, C. N. 2011 Trapping microfluidic drops in wells of surface energy. Phys. Rev. Lett. 107 (12), 124501.CrossRefGoogle ScholarPubMed
Davidson, B. J. & Riley, N. 1971 Cavitation microstreaming. J. Sound Vib. 15, 217233.CrossRefGoogle Scholar
Doinikov, A. A. & Bouakaz, A. 2010 Acoustic microstreaming around a gas bubble. J. Acoust. Soc. Am. 127 (2), 703709.CrossRefGoogle ScholarPubMed
Eckart, C. 1948 Vortices and streams caused by sound waves. Phys. Rev. 73 (1), 6876.CrossRefGoogle Scholar
Elder, S. A. 1958 Cavitation microstreaming. J. Acoust. Soc. Am. 31, 5464.Google Scholar
Friend, J. & Yeo, L. Y. 2011 Microscale acoustofluidics: microfluidics driven via acoustics and ultrasonics. Rev. Mod. Phys. 83 (2), 647704.Google Scholar
Harkin, A., Kaper, T. J. & Nadim, A. 2001 Coupled pulsation and translation of two gas bubbles in a liquid. J. Fluid Mech. 445, 377411.Google Scholar
Holtsmark, J., Johnsen, I., Sikkeland, T. & Skavlem, S. 1954 Boundary layer flow near a cylindrical obstacle in an oscillating incompressible fluid. J. Acoust. Soc. Am. 26 (1), 2639.Google Scholar
Lei, J., Hill, M. & Glynne-Jones, P. 2014 Numerical simulation of 3D boundary-driven acoustic streaming in microfluidic devices. Lab on a Chip 14, 532541.Google Scholar
Leighton, T. G. 1994 The Acoustic Bubble. Academic.Google Scholar
Lighthill, J. 1978 Acoustic streaming. J. Sound Vib. 61 (3), 391418.Google Scholar
Longuet-Higgins, M. S. 1997 Particle drift near an oscillating bubble. Proc. R. Soc. Lond. A 453, 15511568.CrossRefGoogle Scholar
Longuet-Higgins, M. S. 1998 Viscous streaming from an oscillating spherical bubble. Proc. R. Soc. Lond. A 454, 725742.Google Scholar
Marmottant, P. & Hilgenfeldt, S. 2003 Controlled vesicle deformation and lysis by single oscillating bubbles. Nature 423 (6936), 153156.Google Scholar
Mekki-Berrada, F., Thibault, P. & Marmottant, P. 2016 Acoustic pulsation of a microbubble confined between elastic walls. Phys. Fluids 28, 032004.CrossRefGoogle Scholar
Rabaud, D., Thibault, P., Mathieu, M. & Marmottant, P. 2011 Acoustically bound microfluidic bubble crystals. Phys. Rev. Lett. 106 (13), 134501.Google Scholar
Rallabandi, B., Wang, C. & Hilgenfeldt, S. 2014 Two-dimensional streaming flows driven by sessile semicylindrical microbubbles. J. Fluid Mech. 739, 5771.Google Scholar
Raney, W. P., Corelli, J. C. & Westervelt, P. J. 1954 Acoustical streaming in the vicinity of a cylinder. J. Acoust. Soc. Am. 26 (6), 10061014.Google Scholar
Rasband, W. S.(2008) ImageJ. Image processing and analysis in Java. See http://rsbweb.nih.gov/ij/.Google Scholar
Tho, P., Manasseh, R. & Ooi, A. 2007 Cavitation microstreaming patterns in single and multiple bubble systems. J. Fluid Mech. 576, 191233.CrossRefGoogle Scholar
Wang, C., Jalikop, S. V. & Hilgenfeldt, S. 2011 Size-sensitive sorting of microparticles through control of flow geometry. Appl. Phys. Lett. 99 (3), 034101.Google Scholar
Wang, C., Jalikop, S. V. & Hilgenfeldt, S. 2012 Efficient manipulation of microparticles in bubble streaming flows. Biomicrofluidics 6, 012801.Google Scholar
Wang, C., Rallabandi, B. & Hilgenfeldt, S. 2013 Frequency dependence and frequency control of microbubble streaming flows. Phys. Fluids 25 (2), 022002.Google Scholar
Westervelt, P. J. 1953 The theory of steady rotational flow generated by a sound field. J. Acoust. Soc. Am. 25 (1), 6067.CrossRefGoogle Scholar
Wu, J. & Du, G. 1990 Acoustic radiation force on a small compressible sphere in a focused beam. J. Acoust. Soc. Am. 87 (3), 9971003.Google Scholar