Hostname: page-component-54dcc4c588-r5qjk Total loading time: 0 Render date: 2025-09-25T12:13:32.116Z Has data issue: false hasContentIssue false

Integral analysis of adverse pressure gradient turbulent boundary layers

Published online by Cambridge University Press:  22 September 2025

Mingze Han
Affiliation:
National Key Laboratory of Computational Fluid Dynamics, Beihang University, Beijing 100191, PR China
Mingze Ma
Affiliation:
National Key Laboratory of Computational Fluid Dynamics, Beihang University, Beijing 100191, PR China
Chao Yan*
Affiliation:
National Key Laboratory of Computational Fluid Dynamics, Beihang University, Beijing 100191, PR China
*
Corresponding author: Chao Yan, yanchao@buaa.edu.cn

Abstract

This study suggests that partial changes in adverse pressure gradient (APG) turbulent boundary layers (TBLs) relative to zero pressure gradient (ZPG) conditions can be obtained quantitatively by the wall-normal integral, while clarifying the partial influence of non-equilibrium effects. Specifically, the term $u_{\tau }^{2}/ ( {U_{e}V_{e}} )$, which is found to describe the degree of scale separation under non-equilibrium conditions, is decomposed into three terms. Here, $u_{\tau }$ is the frictional velocity, $U_{e}$ is the streamwise velocity at the boundary layer edge, and $V_{e}$ is the normal velocity at the boundary layer edge. This equation includes a ZPG term, a pressure gradient term and a streamwise variation term, indicating that the pressure gradient promotes scale separation. The equation can be applied to ZPG TBLs and equilibrium APG TBLs by separately ignoring the pressure gradient term and the streamwise variation term. By using this equation to simplify the integral of the inertia term of the mean momentum equation, an expression for the Reynolds shear stress in the outer region can be obtained, which indicates how APG affects the Reynolds shear stress through the mean velocity. The above quantitative results support further study of non-equilibrium APG TBLs.

Information

Type
JFM Papers
Copyright
© The Author(s), 2025. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Alfredsson, P.H., Segalini, A. & Örlü, R. 2011 A new scaling for the streamwise turbulence intensity in wall-bounded turbulent flows and what it tells us about the ‘outer’ peak. Phys. Fluids 23 (4), 041702.10.1063/1.3581074CrossRefGoogle Scholar
Atzori, M., Mallor, F., Pozuelo, R., Fukagata, K., Vinuesa, R. & Schlatter, P. 2023 A new perspective on skin-friction contributions in adverse-pressure-gradient turbulent boundary layers. Intl J. Heat Fluid Flow 101, 109117.10.1016/j.ijheatfluidflow.2023.109117CrossRefGoogle Scholar
Bobke, A., Vinuesa, R., Örlü, R. & Schlatter, P. 2017 History effects and near equilibrium in adverse-pressure-gradient turbulent boundary layers. J. Fluid Mech. 820, 667692.10.1017/jfm.2017.236CrossRefGoogle Scholar
Castillo, L. & George, W.K. 2001 Similarity analysis for turbulent boundary layer with pressure gradient: outer flow. AIAA J. 39 (1), 4147.10.2514/2.1300CrossRefGoogle Scholar
Chen, X., Hussain, F. & She, Z.S. 2019 Non-universal scaling transition of momentum cascade in wall turbulence. J. Fluid Mech. 871, R2.10.1017/jfm.2019.309CrossRefGoogle Scholar
Clauser, F.H. 1954 Turbulent boundary layers in adverse pressure gradients. J. Aeronaut. Sci. 21 (2), 91108.10.2514/8.2938CrossRefGoogle Scholar
Coleman, G.N. 2021 Numerical simulation of pressure-induced separation of turbulent flat-plate boundary layers: definition and overview of new cases with suction-only transpiration and a step in Reynolds number. Tech. Rep. NASA. Langley Research Center.Google Scholar
Coleman, G.N., Rumsey, C.L. & Spalart, P.R. 2018 Numerical study of turbulent separation bubbles with varying pressure gradient and Reynolds number. J. Fluid Mech. 847, 2870.10.1017/jfm.2018.257CrossRefGoogle ScholarPubMed
Devenport, W.J. & Lowe, K.T. 2022 Equilibrium and non-equilibrium turbulent boundary layers. Prog. Aerosp. Sci. 131, 100807.10.1016/j.paerosci.2022.100807CrossRefGoogle Scholar
Elnahhas, A. & Johnson, P.L. 2022 On the enhancement of boundary layer skin friction by turbulence: an angular momentum approach. J. Fluid Mech. 940, A36.10.1017/jfm.2022.264CrossRefGoogle Scholar
Fan, Y., Li, W., Atzori, M., Pozuelo, R., Schlatter, P. & Vinuesa, R. 2020 Decomposition of the mean friction drag in adverse-pressure-gradient turbulent boundary layers. Phys. Rev. Fluids 5 (11), 114608.10.1103/PhysRevFluids.5.114608CrossRefGoogle Scholar
Fukagata, K., Iwamoto, K. & Kasagi, N. 2002 Contribution of Reynolds stress distribution to the skin friction in wall-bounded flows. Phys. Fluids 14 (11), L73L76.10.1063/1.1516779CrossRefGoogle Scholar
Griffin, K.P., Fu, L. & Moin, P. 2021 General method for determining the boundary layer thickness in nonequilibrium flows. Phys. Rev. Fluids 6 (2), 024608.10.1103/PhysRevFluids.6.024608CrossRefGoogle Scholar
Gungor, A.G., Maciel, Y., Simens, M.P. & Soria, J. 2016 Scaling and statistics of large-defect adverse pressure gradient turbulent boundary layers. Intl J. Heat Fluid Flow 59, 109124.10.1016/j.ijheatfluidflow.2016.03.004CrossRefGoogle Scholar
Gungor, T.R., Gungor, A.G. & Maciel, Y. 2024 Turbulent boundary layer response to uniform changes of the pressure force contribution. J. Fluid Mech. 997, A75.10.1017/jfm.2024.579CrossRefGoogle Scholar
Gungor, T.R., Maciel, Y. & Gungor, A.G. 2022 Energy transfer mechanisms in adverse pressure gradient turbulent boundary layers: production and inter-component redistribution. J. Fluid Mech. 948, A5.10.1017/jfm.2022.679CrossRefGoogle Scholar
Han, M., Ma, M. & Yan, C. 2024 Consistent outer scaling and analysis of adverse pressure gradient turbulent boundary layers. J. Fluid Mech. 982, A17.10.1017/jfm.2024.97CrossRefGoogle Scholar
Kitsios, V., Sekimoto, A., Atkinson, C., Sillero, J.A., Borrell, G., Gungor, A.G., Jiménez, J. & Soria, J. 2017 Direct numerical simulation of a self-similar adverse pressure gradient turbulent boundary layer at the verge of separation. J. Fluid Mech. 829, 392419.10.1017/jfm.2017.549CrossRefGoogle Scholar
Klewicki, J.C. 2010 Reynolds number dependence, scaling, and dynamics of turbulent boundary layers. Trans. ASME J. Fluids Engng 132, 094001.10.1115/1.4002167CrossRefGoogle Scholar
Klewicki, J., Fife, P. & Wei, T. 2009 On the logarithmic mean profile. J. Fluid Mech. 638, 7393.10.1017/S002211200999084XCrossRefGoogle Scholar
Klewicki, J.C. 2013 A description of turbulent wall-flow vorticity consistent with mean dynamics. J. Fluid Mech. 737, 176204.10.1017/jfm.2013.565CrossRefGoogle Scholar
Knopp, T., Reuther, N., Novara, M., Schanz, D., Schülein, E., Schröder, A. & Kähler, C.J. 2021 Experimental analysis of the log law at adverse pressure gradient. J. Fluid Mech. 918, A17.10.1017/jfm.2021.331CrossRefGoogle Scholar
Kumar, P. & Mahesh, K. 2021 Simple model for mean stress in turbulent boundary layers. Phys. Rev. Fluids 6 (2), 024603.10.1103/PhysRevFluids.6.024603CrossRefGoogle Scholar
Kumar, P. & Mahesh, K. 2022 A method to determine wall shear stress from mean profiles in turbulent boundary layers. Exp. Fluids 63 (1), 6.10.1007/s00348-021-03352-yCrossRefGoogle Scholar
Maciel, Y., Rossignol, K.S. & Lemay, J. 2006 Self-similarity in the outer region of adverse-pressure-gradient turbulent boundary layers. AIAA J. 44 (11), 24502464.10.2514/1.19234CrossRefGoogle Scholar
Maciel, Y., Wei, T., Gungor, A.G. & Simens, M.P. 2018 Outer scales and parameters of adverse-pressure-gradient turbulent boundary layers. J. Fluid Mech. 844, 535.10.1017/jfm.2018.193CrossRefGoogle Scholar
Mellor, G.L. & Gibson, D.M. 1966 Equilibrium turbulent boundary layers. J. Fluid Mech. 24 (2), 225253.10.1017/S0022112066000612CrossRefGoogle Scholar
Morrill-Winter, C., Philip, J. & Klewicki, J. 2017 An invariant representation of mean inertia: theoretical basis for a log law in turbulent boundary layers. J. Fluid Mech. 813, 594617.10.1017/jfm.2016.875CrossRefGoogle Scholar
Parthasarathy, A. & Saxton-Fox, T. 2023 A family of adverse pressure gradient turbulent boundary layers with upstream favourable pressure gradients. J. Fluid Mech. 966, A11.10.1017/jfm.2023.429CrossRefGoogle Scholar
Pope, S.B. 2000 Turbulent Flows. Cambridge University Press.Google Scholar
Pozuelo, R., Li, Q., Schlatter, P. & Vinuesa, R. 2022 An adverse-pressure-gradient turbulent boundary layer with nearly constant $\beta \simeq 1.4$ up to ${R}e_\theta \simeq 8700$ . J. Fluid Mech. 939, A34.10.1017/jfm.2022.221CrossRefGoogle Scholar
Renard, N. & Deck, S. 2016 A theoretical decomposition of mean skin friction generation into physical phenomena across the boundary layer. J. Fluid Mech. 790, 339367.10.1017/jfm.2016.12CrossRefGoogle Scholar
Rkein, H. & Laval, J. 2023 Direct numerical simulation of adverse pressure gradient turbulent boundary layer up to ${R}e_\theta \simeq 8000$ . Intl J. Heat Fluid Flow 103, 109195.10.1016/j.ijheatfluidflow.2023.109195CrossRefGoogle Scholar
Romero, S., Zimmerman, S., Philip, J., White, C. & Klewicki, J. 2022 Properties of the inertial sublayer in adverse pressure-gradient turbulent boundary layers. J. Fluid Mech. 937, A30.10.1017/jfm.2022.6CrossRefGoogle Scholar
Rotta, J. 1953 On the theory of the turbulent boundary layer. Tech. Rep. Available at: https://ntrs.nasa.gov/api/citations/19930093886/downloads/19930093886.pdf.Google Scholar
Simpson, R.L. 1989 Turbulent boundary-layer separation. Annu. Rev. Fluid Mech. 21, 205232.10.1146/annurev.fl.21.010189.001225CrossRefGoogle Scholar
Townsend, A.A. 1956 The properties of equilibrium boundary layers. J. Fluid Mech. 1 (6), 561573.10.1017/S0022112056000378CrossRefGoogle Scholar
Townsend, A.A. 1976 The Structure of Turbulent Shear Flow. Cambridge University Press.Google Scholar
Vinuesa, R., Bobke, A., Örlü, R. & Schlatter, P. 2016 On determining characteristic length scales in pressure-gradient turbulent boundary layers. Phys. Fluids 28 (5), 055101.10.1063/1.4947532CrossRefGoogle Scholar
Volino, R.J. & Schultz, M.P. 2018 Determination of wall shear stress from mean velocity and Reynolds shear stress profiles. Phys. Rev. Fluids 3 (3), 034606.10.1103/PhysRevFluids.3.034606CrossRefGoogle Scholar
Wei, T., Fife, P., Klewicki, J. & Mcmurtry, P. 2005 Properties of the mean momentum balance in turbulent boundary layer, pipe and channel flows. J. Fluid Mech. 522, 303327.10.1017/S0022112004001958CrossRefGoogle Scholar
Wei, T. & Klewicki, J. 2016 Scaling properties of the mean wall-normal velocity in zero-pressure-gradient boundary layers. Phys. Rev. Fluids 1 (8), 082401.10.1103/PhysRevFluids.1.082401CrossRefGoogle Scholar
Wei, T. & Klewicki, J. 2023 Integral relation in zero-pressure-gradient boundary layer flows. Phys. Rev. Fluids 8 (12), 124601.10.1103/PhysRevFluids.8.124601CrossRefGoogle Scholar
Wei, T. & Knopp, T. 2023 Outer scaling of the mean momentum equation for turbulent boundary layers under adverse pressure gradient. J. Fluid Mech. 958, A9.10.1017/jfm.2023.72CrossRefGoogle Scholar
Wei, T., Li, Z., Knopp, T. & Vinuesa, R. 2023 a The mean wall-normal velocity in turbulent boundary layer flows under pressure gradient. J. Fluid Mech. 975, A27.10.1017/jfm.2023.860CrossRefGoogle Scholar
Wei, T., Li, Z. & Wang, Y. 2023 b New formulations for the mean wall-normal velocity and Reynolds shear stress in a turbulent boundary layer under zero pressure gradient. J. Fluid Mech. 969, A3.10.1017/jfm.2023.541CrossRefGoogle Scholar
Wei, T., Li, Z. & Wang, Y. 2024 New momentum integral equation applicable to boundary layer flows under arbitrary pressure gradients. J. Fluid Mech. 984, A64.10.1017/jfm.2024.207CrossRefGoogle Scholar
Wei, T. & Maciel, Y. 2018 Derivation of Zagarola–Smits scaling in zero-pressure-gradient turbulent boundary layers. Phys. Rev. Fluids 3 (1), 012601.10.1103/PhysRevFluids.3.012601CrossRefGoogle Scholar
Wei, T., Maciel, Y. & Klewicki, J. 2017 Integral analysis of boundary layer flows with pressure gradient. Phys. Rev. Fluids 2 (9), 092601.10.1103/PhysRevFluids.2.092601CrossRefGoogle Scholar
Womack, K.M., Meneveau, C. & Schultz, M.P. 2019 Comprehensive shear stress analysis of turbulent boundary layer profiles. J. Fluid Mech. 879, 360389.10.1017/jfm.2019.673CrossRefGoogle Scholar
Zagarola, M.V. & Smits, A.J. 1998 Mean-flow scaling of turbulent pipe flow. J. Fluid Mech. 373, 3379.10.1017/S0022112098002419CrossRefGoogle Scholar