Published online by Cambridge University Press: 17 March 2011
Euler's equations describe the dynamics of gravity waves on the surface of an ideal fluid with arbitrary depth. In this paper, we discuss the stability of periodic travelling wave solutions to the full set of nonlinear equations via a non-local formulation of the water wave problem, modified from that of Ablowitz, Fokas & Musslimani (J. Fluid Mech., vol. 562, 2006, p. 313), restricted to a one-dimensional surface. Transforming the non-local formulation to a travelling coordinate frame, we obtain a new formulation for the stationary solutions in the travelling reference frame as a single equation for the surface in physical coordinates. We demonstrate that this equation can be used to numerically determine non-trivial travelling wave solutions by exploiting the bifurcation structure of this new equation. Specifically, we use the continuous dependence of the amplitude of the solutions on their propagation speed. Finally, we numerically examine the spectral stability of the periodic travelling wave solutions by extending Fourier–Floquet analysis to apply to the associated linear non-local problem. In addition to presenting the full spectrum of this linear stability problem, we recover past well-known results such as the Benjamin–Feir instability for waves in deep water. In shallow water, we find different instabilities. These shallow water instabilities are critically related to the wavelength of the perturbation and are difficult to find numerically. To address this problem, we propose a strategy to estimate a priori the location in the complex plane of the eigenvalues associated with the instability.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.