Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-11T23:52:44.111Z Has data issue: false hasContentIssue false

Influence of swirl on the supersonic wake flow structure behind blunt-based axisymmetric afterbodies

Published online by Cambridge University Press:  27 August 2021

S. Weidner*
Affiliation:
Department of Aerodynamics, Measurements and Simulations, French–German Research Institute of Saint-Louis, Saint-Louis, 68300, France
R. Hruschka
Affiliation:
Department of Aerodynamics, Measurements and Simulations, French–German Research Institute of Saint-Louis, Saint-Louis, 68300, France
F. Leopold
Affiliation:
Department of Aerodynamics, Measurements and Simulations, French–German Research Institute of Saint-Louis, Saint-Louis, 68300, France
*
Email address for correspondence: stephan.weidner@isl.eu

Abstract

Wind-tunnel experiments have been conducted on cylindrical models with canted fins. The fins introduced a swirling motion into the wake downstream of a blunt-based afterbody aligned with a Mach 2 flow. Measurements of the velocity field downstream of the models and the pressure distribution at the model base show evidence of two wake flow patterns distinctively differing from the classical supersonic wake, depending on the degree of rotation introduced. For a fin-cant angle of 16$^\circ$, a rotating wake flow with a central, downstream-directed vortex tube and a concentric, counter-rotating, toric vortex pair forms. A higher fin-cant angle of 32$^\circ$, in turn, results in a swirling flow surrounding a region of low-momentum flow at the axis. Near the central axis of the flow field an upstream flow establishes, extending from the far wake up to the model base. Numerical simulations have been performed to explain the fluid-dynamic processes and the origins of the experimentally observed structural changes of the rotating wakes. The results of the large-scale-turbulence-resolving simulations agree qualitatively well with the measured flow fields. The numerical results show that the centrifugal forces decrease the base pressure and cause the experimentally observed structural changes in the wake.

Type
JFM Papers
Copyright
© French–German Research Institute of Saint-Louis, 2021. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

ANSYS 2013 ANSYS Fluent Theory Guide, Release 15.0. ANSYS.Google Scholar
Augenstein, E., Leopold, F., Christnacher, F. & Bacher, E. 1999 Influence of riblets on a supersonic wake flow. In IUTAM Symposium on Mechanics of Passive and Active Flow Control (ed. G.E. Meier & P.R. Viswanath), Fluid Mechanics and its Applications, vol. 53, pp. 145–150. Springer.Google Scholar
Barone, M.F. & Roy, C.J. 2006 Evaluation of detached eddy simulation for turbulent wake applications. AIAA J. 44 (12), 30623071.Google Scholar
Barth, T.J. & Jespersen, D.C. 1989 The design and application of upwind schemes on unstructured meshes. In 27th Aerospace Sciences Meeting, Reno, Nevada, USA, 1–12. AIAA.Google Scholar
Benjamin, T.B. 1962 Theory of the vortex breakdown phenomenon. J. Fluid Mech. 14 (4), 593629.Google Scholar
Bourdon, C.J. & Dutton, J.C. 2001 Mixing enhancement in compressible base flows via generation of streamwise vorticity. AIAA J. 39 (8), 16331635.CrossRefGoogle Scholar
Bourdon, C.J. & Dutton, J.C. 2002 Altering turbulence in compressible base flow using axisymmetric sub-boundary-layer disturbances. AIAA J. 40 (11), 22172224.Google Scholar
Celik, I.B., Cehreli, Z.N. & Yavuz, I. 2005 Index of resolution quality for large eddy simulations. J. Fluids Eng. 127 (5), 949958.Google Scholar
Chapman, D.R. 1950 An analysis of base pressure at supersonic velocities and comparison with experiment. NACA Tech. Rep. TN 2137. (Superseded by NACA Tech. Rep. TR 1051, 1951).Google Scholar
Coleman, H.W. & Steele, W.G. 2009 Experimentation, Validation, and Uncertainty Analysis for Engineers, 3rd edn. John Wiley & Sons.CrossRefGoogle Scholar
Cope, W.F. 1953 A comparison of calculated and measured base pressures of cylindrically based projectiles. Tech. Rep. C. P. No. 118. Aeronautical Research Council.Google Scholar
Danberg, J.E. 1990 Analysis of the flight performance of the 155 mm M864 base burn projectile. Tech. Rep. BRL-TR 3083. US Army Ballistic Research Laboratory (BRL).Google Scholar
Délery, J., Horowitz, E., Leuchter, O. & Solignac, J.-L. 1984 Études fondamentales sur les écoulements tourbillonnaires [Fundamental studies on vortex flows]. La Rech. Aérosp. 1984 (2), 81104.Google Scholar
Dolling, D.S. & Bogdonoff, S.M. 1980 Experimental investigation of three-dimensional shock wave turbulent boundary layer interaction: an exploratory study of blunt fin-induced flows. MAE 1468. Gas Dynamics Laboratory Princeton University.Google Scholar
Durgesh, V., Naughton, J.W. & Whitmore, S.A. 2013 Experimental investigation of base-drag reduction via boundary-layer modification. AIAA J. 51 (2), 416425.CrossRefGoogle Scholar
Dutton, J.C., Herrin, J.L., Molezzi, M.J., Mathur, T. & Smith, K.M. 1995 Recent progress on high-speed separated base flows. In 33rd Aerospace Sciences Meeting and Exhibit, Reno, Nevada, USA, 1–29. AIAA.CrossRefGoogle Scholar
Forsythe, J.R, Hoffmann, K.A., Cummings, R.M. & Squires, K.D. 2002 Detached-eddy simulation with compressibility corrections applied to a supersonic axisymmetric base flow. Trans. ASME J. Fluids Engng 124 (4), 911923.CrossRefGoogle Scholar
GE Sensing 2007 PMP 4000 Series, Druck Amplified Output Pressure Transducers. GE Sensing, Billerica, used model: PMP 4070-A, 1  bar.Google Scholar
Haertig, J., Johé, C., Demeautis, C. & Duffner, P. 1996 Validation de la vélocimétrie par image de particules (PIV) dans les écoulements subsoniques et supersoniques. R 111/96. French–German Research Institute of Saint-Louis.Google Scholar
Hall, M.G. 1972 Vortex breakdown. Annu. Rev. Fluid Mech. 4, 195218.CrossRefGoogle Scholar
Herrada, M.A., Pérez-Saborid, M. & Barrero, A. 2003 Vortex breakdown in compressible flows in pipes. Phys. Fluids 15 (8), 22082215.CrossRefGoogle Scholar
Herrin, J.L. & Dutton, J.C. 1994 a Supersonic base flow experiments in the near wake of a cylindrical afterbody. AIAA J. 32 (1), 7783.CrossRefGoogle Scholar
Herrin, J.L. & Dutton, J.C. 1994 b Supersonic near-wake afterbody boattailing effects on axisymmetric bodies. J. Spacecr. Rockets 31 (6), 10211028.CrossRefGoogle Scholar
Herrin, J.L. & Dutton, J.C. 1995 Effect of a rapid expansion on the development of compressible shear layers. Phys. Fluids 7 (1), 159171.CrossRefGoogle Scholar
Hruschka, R. & Leopold, F. 2015 Effect of the rotation of finned projectiles on drag and base pressure. In 29th International Symposium on Shock Waves 2. ISSW 2013 (ed. R. Bonazza & D. Ranjan), pp. 1259–1264. Springer.CrossRefGoogle Scholar
Huang, P.G., Bradshaw, P. & Coakley, T.J. 1993 Skin friction and velocity profile family for compressible turbulent boundary layers. AIAA J. 31 (9), 16001604.CrossRefGoogle Scholar
Janssen, J.R. & Dutton, J.C. 2005 Sub-boundary-layer disturbance effects on supersonic base-pressure fluctuations. J. Spacecr. Rockets 42 (6), 10171024.CrossRefGoogle Scholar
JCGM 100:2008(E) 2010 Evaluation of Measurement Data – Guide to the Expression of Uncertainty in Measurement (GUM 1995 with Minor Corrections). Joint Committee on Guides in Metrology (JCGM), Organisation Internationale de Métrologie Légale (OIML) G 1 -100, (corrected version).Google Scholar
Jiménez-González, J.I., Sevilla, A., Sanmiguel-Rojas, E. & Martínez-Bazán, C. 2014 Global stability analysis of the axisymmetric wake past a spinning bullet-shaped body. J. Fluid Mech. 748 (3), 302327.CrossRefGoogle Scholar
Kawai, S. & Fujii, K. 2005 Computational study of supersonic base flow using hybrid turbulence methodology. AIAA J. 43 (6), 12651275.CrossRefGoogle Scholar
Kemp, R.S. 2009 Gas centrifuge theory and development: a review of US programs. Sci. Glob. Secur. 17, 119.CrossRefGoogle Scholar
Kirchner, B.M, Favale, J.V., Elliot, G.S. & Dutton, J.C. 2019 Three-component turbulence measurements and analysis of a supersonic, axisymmetric base flow. AIAA J. 57 (6), 24962512.CrossRefGoogle Scholar
Kulite 2014 Cryogenic Standard Version Miniature Pressure Transducer. Kulite Semiconductor Products, used model: CCQ-093-25D.Google Scholar
Kuruvila, G. & Salas, M. 1990 Three-dimensional simulation of vortex breakdown. NASA Tech. Rep. TM 102664.CrossRefGoogle Scholar
Kurzweg, H.H. 1951 Interrelationship between boundary layer and base pressure. J. Aeronaut. Sci. 18 (11), 743748.CrossRefGoogle Scholar
Lamb, J.P. & Oberkampf, W.L. 1995 Review and development of base pressure and base heating correlations in supersonic flow. J. Spacecr. Rockets 32 (1), 823.CrossRefGoogle Scholar
LaVision DaVis 10.1 2020 DaVis 10.1 Software. LaVision GmbH.Google Scholar
van Leer, B. 1979 Towards the ultimate conservative difference scheme: Part V. A second-order sequel to Godunov's method. J. Comput. Phys. 32 (1), 101136.CrossRefGoogle Scholar
Leonard, B.P. 1991 The ultimate conservative difference scheme applied to unsteady one-dimensional advection. Comput. Meth. Appl. Mech. Engng 88 (1), 1774.CrossRefGoogle Scholar
Leopold, F. 1993 Simulation und stabilitätstheoretische Untersuchungen zum kompressiblen Nachlauf eines längsangeströmten Kreiszylinders. PhD thesis, Technische Universität Braunschweig, ZLR-Forschungs- bericht 93-05.Google Scholar
Li, W. & Hopke, P.K. 1993 Initial size distributions and hygroscopicity of indoor combustion aerosol particles. Aerosol Sci. Technol. 19 (3), 305316.CrossRefGoogle Scholar
Luginsland, T. & Kleiser, L. 2015 Mach number influence on vortex breakdown in compressible, subsonic swirling nozzle-jet flows. In Direct and Large-Eddy Simulation IX (ed. J. Frohlich et al. ), ERCOFTAC Series, vol. 20, pp. 311–317. Springer.CrossRefGoogle Scholar
Mahesh, K. 1996 A model for the onset of breakdown in an axisymmetric compressible vortex. Phys. Fluids 8 (12), 33383345.CrossRefGoogle Scholar
Maltby, R.L. 1962 Flow visualization in wind tunnels using indicators. Tech rep. AGARDograph 70. AGARD.Google Scholar
Martinez, B. 2007 Notice pour le logiciel ISL de dépouillement de mesures par peintures sensibles à la pression (PSP). Tech. Rep. NI 906/2007. French–German Research Institute of Saint-Louis.Google Scholar
Melville, R. 1996 The role of compressibility in free vortex breakdown. In Fluid Dynamics Conference, New Orleans, Louisiana, USA, 1–16. AIAA.CrossRefGoogle Scholar
Menter, F.R. 1994 Two-equation eddy-viscosity turbulence models for engineering applications. AIAA J. 32 (8), 15981605.CrossRefGoogle Scholar
Moore, F.G., Hymer, T. & Wilcox, F.J. Jr. 1992 Improved empirical model for base drag prediction on missile configurations based on new wind tunnel data. NSWCDD/TR 92/509. Naval Surface Warfare Center.CrossRefGoogle Scholar
Murthy, S.N.B. & Osborn, J.R. 1976 Base flow phenomena with and without injection: experimental results, theories, and bibliography. In Aerodynamics of Base Combustion (ed. S.N.B. Murthy, J.R. Osborn, A.W. Barrows & J.R. Ward), Progress in Astronautics and Aeronautics, vol. 40, pp. 7–210. AIAA.Google Scholar
Reedy, T.M., Elliot, G.S., Dutton, J.C. & Lee, Y. 2012 Passive control of high-speed separated flows using splitter plates. AIAA J. 50 (7), 15861595.CrossRefGoogle Scholar
Roache, P.J. 1994 Perspective: a method for uniform reporting of grid refinement studies. Trans. ASME J. Fluids Engng 116 (3), 405413.CrossRefGoogle Scholar
Roache, P.J. 1997 Quantification of uncertainty in computational fluid dynamics. Annu. Rev. Fluid Mech. 29 (1), 123160.CrossRefGoogle Scholar
Roache, P.J. 2003 Error bars for CFD. In 41st Aerospace Sciences Meeting and Exhibit, Reno, Nevada, USA, 1–21. AIAA.CrossRefGoogle Scholar
Rodgman, A. & Perfetti, T.A. 2013 The Chemical Components of Tobacco and Tobacco Smoke, 2nd edn. CRC.CrossRefGoogle Scholar
Rusak, Z., Choi, J.J., Bourquard, N. & Wang, S. 2015 Vortex breakdown of compressible subsonic swirling flows in a finite-length straight circular pipe. J. Fluid Mech. 781, 327.CrossRefGoogle Scholar
Sahu, J., Nietubicz, C. & Steger, J. 1985 Navier-stokes computations of projectile base flow with and without mass injection. AIAA J. 23 (9), 13481355.CrossRefGoogle Scholar
Samimy, M. & Lele, S.K. 1990 Particle-laden compressible free shear layers. In 26th Joint Propulsion Conference, Orlando, Florida, USA, 1–11. AIAA.CrossRefGoogle Scholar
Samimy, M. & Lele, S.K. 1991 Motion of particles with inertia in a compressible free shear layer. Phys. Fluids A: Fluid Dyn. 3 (8), 19151923.CrossRefGoogle Scholar
Sandberg, R.D. 2012 Numerical investigation of turbulent supersonic axisymmetric wakes. J. Fluid Mech. 702, 488520.CrossRefGoogle Scholar
Sandberg, R.D. & Fasel, H.F. 2006 Numerical investigation of transitional supersonic axisymmetric wakes. J. Fluid Mech. 563, 141.CrossRefGoogle Scholar
Scarano, F. & van Oudheusden, B.W. 2003 Planar velocity measurements of a two-dimensional compressible wake. Exp. Fluids 34 (3), 430441.CrossRefGoogle Scholar
Schlichting, H. & Gersten, K. 2017 Boundary-Layer Theory, 9th edn. Springer.CrossRefGoogle Scholar
Settles, G.S. & Cattafesta, L.N. III 1993 Supersonic shock wave/vortex interaction. NASA Tech. Rep. CR 192917.CrossRefGoogle Scholar
Sieling, W.R. & Page, R.H. 1970 A re-examination of sting interference effects. In Propulsion and ASW Meeting, Newport, Rhode Island, USA, 1–7. AIAA.Google Scholar
Simon, F., Deck, S., Guillen, P. & Sagaut, P. 2006 Reynolds-averaged Navier–Stokes/large-eddy simulations of supersonic base flow. AIAA J. 44 (11), 25782590.CrossRefGoogle Scholar
Simon, F., Deck, S., Guillen, P., Sagaut, P. & Merlen, A. 2007 Numerical simulation of the compressible mixing layer past an axisymmetric trailing edge. J. Fluid Mech. 591, 215253.CrossRefGoogle Scholar
Spalart, P.R. 2001 Young person's guide to detached-eddy simulation grids. NASA Tech. Rep. CR 2001-211032.Google Scholar
Stern, O. & Volmer, M. 1919 Über die Abklingungszeit der Fluoreszenz. Phys. Z. 20, 183188 (published in Schmidt-Böcking, H., Reich, K., Templeton, A., Trageser, W. and Vill, V. (eds.), Otto Sterns Veröffentlichungen, Part 2. Springer, 2016).Google Scholar
Tropea, C., Yarin, A. & Foss, J.F. 2007 Springer Handbook of Experimental Fluid Mechanics, 1st edn. Springer.CrossRefGoogle Scholar
Visbal, M. & Gordnier, R. 1995 Compressibility effects on vortex breakdown onset above a 75-degree sweep delta wing. J. Aircraft 32 (5), 936942.CrossRefGoogle Scholar
Vreman, B., Geurts, B. & Kuerten, H. 1996 Comparison of numerical schemes in large-eddy simulation of the temporal mixing layer. Intl J. Numer. Meth. Fluids 22 (4), 297311.3.0.CO;2-X>CrossRefGoogle Scholar
Weidner, S. 2020 Einfluss des Drall auf den Überschallnachlauf eines längsangeströmten zylindrischen Körpers. PhD thesis, Karlsruhe Institute of Technology, Schriftenreihe des Instituts für Strömungsmechanik.Google Scholar
Weidner, S., Hruschka, R. & Albers, H. 2019 a Base pressure of spinning finned afterbodies at Mach 3.0. In 54th International Conference on Applied Aerodynamics, Paris, France, 1–6. 3AF.Google Scholar
Weidner, S., Hruschka, R. & Leopold, F. 2019 b Base pressure of spinning finned afterbodies in supersonic flow. AIAA J. 57 (1), 472475.CrossRefGoogle Scholar
Weidner, S., Hruschka, R., Rey, C., Leopold, F., Frohnapfel, B. & Seiler, F. 2017 Effects of a swirling flow motion on the supersonic near wake flow behind blunt-based afterbodies. In 47th Fluid Dynamics Conference, Denver, Colorado, USA, 1–14. AIAA.CrossRefGoogle Scholar
White, F.M. & Christoph, G.H. 1971 A simple new analysis of compressible turbulent two-dimensional skin friction under arbitrary conditions. AFFDL Tech. Rep. TR 70-133. Wright-Patterson Air Force Base.Google Scholar
Wieneke, B. 2015 PIV uncertainty quantification from correlation statistics. Meas. Sci. Technol. 26, 074002.CrossRefGoogle Scholar

Weidner et al. supplementary movie 1

\begin{figure} \caption{Video recording of the oil flow visualization for the afterbody model with \SI{0}{\degree}-canted fins.} \end{figure}

Download Weidner et al. supplementary movie 1(Video)
Video 9.7 MB

Weidner et al. supplementary movie 2

\begin{figure} \caption{Video recording of the oil flow visualization for the afterbody model with \SI{16}{\degree}-canted fins.} \end{figure}

Download Weidner et al. supplementary movie 2(Video)
Video 10.3 MB

Weidner et al. supplementary movie 3

\begin{figure} \caption{Video recording of the oil flow visualization for the afterbody model with \SI{32}{\degree}-canted fins.} \end{figure}

Download Weidner et al. supplementary movie 3(Video)
Video 9.7 MB

Weidner et al. supplementary movie 4

\begin{figure} \caption{Animation of the time-averaged streamtraces for the afterbody model with \SI{0}{\degree}-canted fins based on DES simulations.} \end{figure}

Download Weidner et al. supplementary movie 4(Video)
Video 3.1 MB

Weidner et al. supplementary movie 5

\begin{figure} \caption{Animation of the time-averaged streamtraces for the afterbody model with \SI{16}{\degree}-canted fins based on DES simulations.} \end{figure}

Download Weidner et al. supplementary movie 5(Video)
Video 6.4 MB

Weidner et al. supplementary movie 6

\begin{figure} \caption{Animation of the time-averaged streamtraces for the afterbody model with \SI{32}{\degree}-canted fins based on DES simulations.} \end{figure}

Download Weidner et al. supplementary movie 6(Video)
Video 10.2 MB
Supplementary material: PDF

Weidner et al. supplementary material

Captions for movies 1-6

Download Weidner et al. supplementary material(PDF)
PDF 31.2 KB