Hostname: page-component-68c7f8b79f-lqrcg Total loading time: 0 Render date: 2025-12-21T16:29:20.889Z Has data issue: false hasContentIssue false

Inertial migration of finite-size filaments in Poiseuille flow

Published online by Cambridge University Press:  24 November 2025

Yetao Lu
Affiliation:
Department of Modern Mechanics, University of Science and Technology of China, Hefei, Anhui 230026, PR China
Jiaqian Zhang
Affiliation:
Department of Modern Mechanics, University of Science and Technology of China, Hefei, Anhui 230026, PR China
Haibo Huang*
Affiliation:
Department of Modern Mechanics, University of Science and Technology of China, Hefei, Anhui 230026, PR China
*
Corresponding author: Haibo Huang, huanghb@ustc.edu.cn

Abstract

We investigate the inertial migration of slender, axisymmetric, neutrally buoyant filaments in planar Poiseuille flow over a wide range of channel Reynolds numbers (${\textit{Re}}_c \in [0.5, 2000]$). Filaments exhibit complex oscillatory trajectories during tumbling, with the lateral migration velocity strongly coupled to their orientation. Using a singular perturbation approach, we derive a quasi-analytical expression for the migration velocity that captures both instantaneous and period-averaged behaviour. Finite-size effects are incorporated through solid-phase inertia and the influence of fluid inertia on the orientation dynamics. To validate the theory, we develop a fully resolved numerical framework based on the lattice Boltzmann and immersed boundary methods. The theoretical predictions show good agreement with simulation results over a wide range of Reynolds numbers and confinement ratios. Our model outperforms previous theories by providing improved agreement in predicting equilibrium positions across the investigated range of ${\textit{Re}}_c$, particularly at high values. Notably, it captures the inward migration trend toward the channel centreline at high ${\textit{Re}}_c$ and reveals a new dynamics, including the cessation and resumption of tumbling under strong inertial effects. These findings provide a robust foundation for understanding filament migration and guiding inertial microfluidic design.

Information

Type
JFM Papers
Copyright
© The Author(s), 2025. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Aidun, C.K., Lu, Y. & Ding, E.-J. 1998 Direct analysis of particulate suspensions with inertia using the discrete Boltzmann equation. J. Fluid Mech. 373, 287311.10.1017/S0022112098002493CrossRefGoogle Scholar
Anand, P. & Subramanian, G. 2023 Inertial migration of a neutrally buoyant spheroid in plane Poiseuille flow. J. Fluid Mech. 974, A39.10.1017/jfm.2023.817CrossRefGoogle Scholar
Anand, P. & Subramanian, G. 2024 Inertial migration in a pressure-driven channel flow: beyond the Segre-Silberberg pinch. Phys. Rev. Lett. 132, 054002.10.1103/PhysRevLett.132.054002CrossRefGoogle Scholar
Asmolov, E.S. 1999 The inertial lift on a spherical particle in a plane Poiseuille flow at large channel Reynolds number. J. Fluid Mech. 381, 6387.10.1017/S0022112098003474CrossRefGoogle Scholar
Asmolov, E.S., Dubov, A.L., Nizkaya, T.V., Harting, J. & Vinogradova, O.I. 2018 Inertial focusing of finite-size particles in microchannels. J. Fluid Mech. 840, 613630.10.1017/jfm.2018.95CrossRefGoogle Scholar
Avila, M., Barkley, D. & Hof, B. 2023 Transition to turbulence in pipe flow. Annu. Rev. Fluid Mech. 55, 575602.10.1146/annurev-fluid-120720-025957CrossRefGoogle Scholar
Bagge, J., Rosén, T., Lundell, F. & Tornberg, A.-K. 2021 Parabolic velocity profile causes shape-selective drift of inertial ellipsoids. J. Fluid Mech. 926, A24.10.1017/jfm.2021.716CrossRefGoogle Scholar
Banaei, A.A., Rosti, M.E. & Brandt, L. 2020 Numerical study of filament suspensions at finite inertia. J. Fluid Mech. 882, A5.10.1017/jfm.2019.794CrossRefGoogle Scholar
Butcher, J.C. 2016 Numerical Methods for Ordinary Differential Equations. John Wiley & Sons.10.1002/9781119121534CrossRefGoogle Scholar
Chen, D., Lin, J. & Hu, X. 2021 Research on the inertial migration characteristics of bi-disperse particles in channel flow. Appl. Sci. 11, 8800.10.3390/app11198800CrossRefGoogle Scholar
Chen, S.-D., Pan, T.-W. & Chang, C.-C. 2012 The motion of a single and multiple neutrally buoyant elliptical cylinders in plane Poiseuille flow. Phys. Fluids 24, 103302.10.1063/1.4757387CrossRefGoogle Scholar
Chwang, A.T. 1975 Hydromechanics of low-Reynolds-number flow. Part 3. Motion of a spheroidal particle in quadratic flows. J. Fluid Mech. 72, 1734.10.1017/S0022112075002911CrossRefGoogle Scholar
Conte, S.D. 1966 The numerical solution of linear boundary value problems. SIAM Rev. 8, 309321.10.1137/1008063CrossRefGoogle Scholar
Cox, R.G. 1971 The motion of long slender bodies in a viscous fluid. Part 2. Shear flow. J. Fluid Mech. 45, 625657.10.1017/S0022112071000259CrossRefGoogle Scholar
Dabade, V., Marath, N.K. & Subramanian, G. 2016 The effect of inertia on the orientation dynamics of anisotropic particles in simple shear flow. J. Fluid Mech. 791, 631703.10.1017/jfm.2016.14CrossRefGoogle Scholar
Dekker, K. 1984 Stability of Runge–Kutta methods for stiff nonlinear differential equations. CWI Monographs 2, 180183.Google Scholar
Dhanasekaran, J. & Koch, D.L. 2019 The hydrodynamic lift of a slender, neutrally buoyant fibre in a wall-bounded shear flow at small Reynolds number. J. Fluid Mech. 879, 121146.10.1017/jfm.2019.653CrossRefGoogle Scholar
Do-Quang, M., Amberg, G., Brethouwer, G. & Johansson, A.V. 2014 Simulation of finite-size fibers in turbulent channel flows. Phys. Rev. E 89, 013006.10.1103/PhysRevE.89.013006CrossRefGoogle ScholarPubMed
Einarsson, J., Candelier, F., Lundell, F., Angilella, J.R. & Mehlig, B. 2015 Effect of weak fluid inertia upon Jeffery orbits. Phys. Rev. E 91, 041002.10.1103/PhysRevE.91.041002CrossRefGoogle ScholarPubMed
Feng, H., Hockin, M., Capecchi, M., Gale, B. & Sant, H. 2020 Size and shape based chromosome separation in the inertial focusing device. Biomicrofluidics 14 (6), 064109.10.1063/5.0026281CrossRefGoogle ScholarPubMed
Godunov, S.K. 1961 Numerical solution of boundary-value problems for systems of linear ordinary differential equations. Usp. Mat. Nauk 16, 171174.Google Scholar
Goldstein, D., Handler, R. & Sirovich, L. 1993 Modeling a no-slip flow boundary with an external force field. J. Comput. Phys. 105, 354366.10.1006/jcph.1993.1081CrossRefGoogle Scholar
Harding, B., Stokes, Y.M. & Bertozzi, A.L. 2019 Effect of inertial lift on a spherical particle suspended in flow through a curved duct. J. Fluid Mech. 875, 143.10.1017/jfm.2019.323CrossRefGoogle Scholar
Ho, B.P. & Leal, LG. 1974 Inertial migration of rigid spheres in two-dimensional unidirectional flows. J. Fluid Mech. 65, 365400.10.1017/S0022112074001431CrossRefGoogle Scholar
Hogg, A.J. 1994 The inertial migration of non-neutrally buoyant spherical particles in two-dimensional shear flows. J. Fluid Mech. 272, 285318.10.1017/S0022112094004477CrossRefGoogle Scholar
Hood, K., Lee, S. & Roper, M. 2015 Inertial migration of a rigid sphere in three-dimensional Poiseuille flow. J. Fluid Mech. 765, 452479.10.1017/jfm.2014.739CrossRefGoogle Scholar
Hur, S.C., Choi, S.-E., Kwon, S. & Carlo, D.D. 2011 Inertial focusing of non-spherical microparticles. Appl. Phys. Lett. 99, 044101.10.1063/1.3608115CrossRefGoogle Scholar
Jeffery, G.B. 1922 The motion of ellipsoidal particles immersed in a viscous fluid. Proc. R. Soc. Lond. A Math. Phys. Engng Sci. 102, 161179.Google Scholar
Kim, S. & Karrila, S. J. 2013 Microhydrodynamics: Principles and Selected Applications. Butterworth-Heinemann.Google Scholar
Kim, W., Lee, I. & Choi, H. 2018 A weak-coupling immersed boundary method for fluid–structure interaction with low density ratio of solid to fluid. J. Comput. Phys. 359, 296311.10.1016/j.jcp.2017.12.045CrossRefGoogle Scholar
Krüger, T., Kusumaatmaja, H., Kuzmin, A., Shardt, O., Silva, G. & Viggen, E.M. 2017 The Lattice Boltzmann Method, vol. 10. Springer.10.1007/978-3-319-44649-3CrossRefGoogle Scholar
Li, M., Muñoz, H.E., Goda, K. & Di Carlo, D. 2017 Shape-based separation of microalga Euglena gracilis using inertial microfluidics. Sci. Rep.-UK 7 (1), 10802.10.1038/s41598-017-10452-5CrossRefGoogle ScholarPubMed
Lu, Y. & Huang, H. 2024 Flexible non-Brownian filament in intensified shear flow. Phys. Fluids 36 (9), 093347.10.1063/5.0230485CrossRefGoogle Scholar
Lundell, F. & Carlsson, A. 2010 Heavy ellipsoids in creeping shear flow: transitions of the particle rotation rate and orbit shape. Phys. Rev. E 81, 016323.10.1103/PhysRevE.81.016323CrossRefGoogle ScholarPubMed
Lundell, F., Söderberg, L.D. & Alfredsson, P.H. 2011 Fluid mechanics of papermaking. Annu. Rev. Fluid Mech. 43, 195217.10.1146/annurev-fluid-122109-160700CrossRefGoogle Scholar
Masaeli, M., Sollier, E., Amini, H., Mao, W., Camacho, K., Doshi, N., Mitragotri, S., Alexeev, A. & Di Carlo, D. 2012 Continuous inertial focusing and separation of particles by shape. Phys. Rev. X 2, 031017.Google Scholar
Matas, J.-P., Morris, J.F. & Guazzelli, É. 2004 Inertial migration of rigid spherical particles in Poiseuille flow. J. Fluid Mech. 515, 171195.10.1017/S0022112004000254CrossRefGoogle Scholar
Matas, J.-P., Morris, J.F. & Guazzelli, E. 2009 Lateral force on a rigid sphere in large-inertia laminar pipe flow. J. Fluid Mech. 621, 5967.10.1017/S0022112008004977CrossRefGoogle Scholar
Nakagawa, N., Yabu, T., Otomo, R., Kase, A., Makino, M., Itano, T. & Sugihara-Seki, M. 2015 Inertial migration of a spherical particle in laminar square channel flows from low to high Reynolds numbers. J. Fluid Mech. 779, 776793.10.1017/jfm.2015.456CrossRefGoogle Scholar
Nørsett, S.P. & Wanner, G. 1981 Perturbed collocation and Runge–Kutta methods. Numer. Math. 38, 193208.10.1007/BF01397089CrossRefGoogle Scholar
Qi, D. & Luo, L.-S. 2003 Rotational and orientational behaviour of three-dimensional spheroidal particles in Couette flows. J. Fluid Mech. 477, 201213.10.1017/S0022112002003191CrossRefGoogle Scholar
Rosén, T., Einarsson, J., Nordmark, A., Aidun, C.K., Lundell, F. & Mehlig, B. 2015 Numerical analysis of the angular motion of a neutrally buoyant spheroid in shear flow at small Reynolds numbers. Phys. Rev. E 92, 063022.10.1103/PhysRevE.92.063022CrossRefGoogle ScholarPubMed
Rosén, T., Nordmark, A., Aidun, C.K., Do-Quang, M. & Lundell, F. 2016 Quantitative analysis of the angular dynamics of a single spheroid in simple shear flow at moderate Reynolds numbers. Phys. Rev. Fluids 1, 044201.10.1103/PhysRevFluids.1.044201CrossRefGoogle Scholar
Russell, R.D. & Christiansen, J. 1978 Adaptive mesh selection strategies for solving boundary value problems. SIAM J. Numer. Anal. 15, 5980.10.1137/0715004CrossRefGoogle Scholar
Saffman, P.G. 1965 The lift on a small sphere in a slow shear flow. J. Fluid Mech. 22, 385400.10.1017/S0022112065000824CrossRefGoogle Scholar
Schonberg, J.A. & Hinch, E.J. 1989 Inertial migration of a sphere in Poiseuille flow. J. Fluid Mech. 203, 517524.10.1017/S0022112089001564CrossRefGoogle Scholar
Segré, G. & Silberberg, A. 1962 a Behaviour of macroscopic rigid spheres in Poiseuille flow part 1. Determination of local concentration by statistical analysis of particle passages through crossed light beams. J. Fluid Mech. 14, 115135.10.1017/S002211206200110XCrossRefGoogle Scholar
Segre, G. & Silberberg, Alex 1962 b Behaviour of macroscopic rigid spheres in Poiseuille flow part 2. Experimental results and interpretation. J. Fluid Mech. 14, 136157.10.1017/S0022112062001111CrossRefGoogle Scholar
Son, J., Samuel, R., Gale, B.K., Carrell, D.T. & Hotaling, J.M. 2017 Separation of sperm cells from samples containing high concentrations of white blood cells using a spiral channel. Biomicrofluidics 11 (5), 054106.10.1063/1.4994548CrossRefGoogle ScholarPubMed
Subramanian, G. & Koch, D.L. 2005 Inertial effects on fibre motion in simple shear flow. J. Fluid Mech. 535, 383414.10.1017/S0022112005004829CrossRefGoogle Scholar
Teng, J., Rallabandi, B., Stone, H.A. & Ault, J.T. 2022 Coupling of translation and rotation in the motion of finite-length rods near solid boundaries. J. Fluid Mech. 938, A30.10.1017/jfm.2022.177CrossRefGoogle Scholar
Trevelyan, B. & Mason, S.G. 1951 Particle motions in sheared suspensions. I. Rotations. J. Colloid Sci. 6, 354367.10.1016/0095-8522(51)90005-0CrossRefGoogle Scholar
Wanner, G.& Hairer, E. 1996 Solving Ordinary Differential Equations II, vol. 375. Springer.Google Scholar
Wilkinson, A., Pradas, M. & Wilkinson, M. 2023 Lubrication dynamics of a settling plate. J. Fluid Mech. 977, A28.10.1017/jfm.2023.829CrossRefGoogle Scholar
Wu, J.S. & Aidun, C.K. 2010 A method for direct simulation of flexible fiber suspensions using lattice boltzmann equation with external boundary force. Intl J. Multiphase Flow 36, 202209.10.1016/j.ijmultiphaseflow.2009.11.003CrossRefGoogle Scholar
Xu, C., Liu, X., Liu, K., Xiong, Y. & Huang, H. 2022 A free flexible flap in channel flow. J. Fluid Mech. 941, A12.10.1017/jfm.2022.282CrossRefGoogle Scholar
Yang, X.L., Zhang, X., Li, Z.L. & He, G.W. 2009 A smoothing technique for discrete delta functions with application to immersed boundary method in moving boundary simulations. J. Comput. Phys. 228, 78217836.10.1016/j.jcp.2009.07.023CrossRefGoogle Scholar
Zou, Q. & He, X. 1997 On pressure and velocity boundary conditions for the lattice Boltzmann BGK model. Phys. Fluids 9 (6), 15911598.10.1063/1.869307CrossRefGoogle Scholar