Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-12T05:35:07.594Z Has data issue: false hasContentIssue false

Ideal and non-ideal planar compressible fluid flows in radial equilibrium

Published online by Cambridge University Press:  22 November 2023

Paolo Gajoni
Affiliation:
Department of Aerospace Science and Technology, Politecnico di Milano, Via La Masa 34, 20156 Milano, Italy
Alberto Guardone*
Affiliation:
Department of Aerospace Science and Technology, Politecnico di Milano, Via La Masa 34, 20156 Milano, Italy
*
Email address for correspondence: alberto.guardone@polimi.it

Abstract

Two-dimensional compressible flows in radial equilibrium are investigated in the ideal dilute-gas regime and the non-ideal single-phase regime close to the liquid–vapour saturation curve and the critical point. Radial equilibrium flows along constant-curvature streamlines are considered. All properties are therefore independent of the tangential streamwise coordinate. A differential relation for the Mach number dependency on the radius is derived for both ideal and non-ideal conditions. For ideal flows, the differential relation is integrated analytically. Assuming a constant specific heat ratio $\gamma$, the Mach number is a monotonically decreasing function of the radius of curvature for ideal flows, with $\gamma$ being the only fluid-dependent parameter. In non-ideal conditions, the Mach number profile also depends on the total thermodynamic conditions of the fluid. For high molecular complexity fluids, such as toluene or hexamethyldisiloxane, a non-monotone Mach number profile is admissible in single-phase supersonic conditions. For Bethe–Zel'dovich–Thompson fluids, non-monotone behaviour is observed in subsonic conditions. Numerical simulations of subsonic and supersonic turning flows are carried out using the streamline curvature method and the computational fluid dynamics software SU2, respectively, both confirming the flow evolution from uniform flow conditions to the radial equilibrium profile predicted by the theory.

Type
JFM Papers
Copyright
© The Author(s), 2023. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anders, J.B., Anderson, W.K. & Murthy, A.V. 1999 Transonic similarity theory applied to a supercritical airfoil in heavy gases. J. Aircraft 36 (6), 957964.CrossRefGoogle Scholar
Angelino, G. 1968 Carbon dioxide condensation cycles for power production. J. Engng Power 90, 287295.CrossRefGoogle Scholar
Bethe, H.A. 1942 The theory of shock waves for an arbitrary equation of state. Tech. Rep. 545. Office of Scientific Research and Development.Google Scholar
Callen, H.B. 1985 Thermodynamics and an Introduction to Thermostatistics, 2nd edn. Wiley.Google Scholar
Colonna, P. & Guardone, A. 2006 Molecular interpretation of nonclassical gas dynamics of dense vapors under the van der Waals model. Phys. Fluids 18 (5), 056101.CrossRefGoogle Scholar
Colonna, P., Guardone, A., Nannan, N.R. & van der Stelt, T.P. 2009 On the computation of the fundamental derivative of gas dynamics using equations of state. Fluid Phase Equilib. 286 (1), 4354.CrossRefGoogle Scholar
Colonna, P., van der Stelt, T. & Guardone, A. 2012 FluidProp (Version 3.0): a program for the estimation of thermophysical properties of fluids. Asimptote, Delft, The Netherlands, http://www.fluidprop.com.Google Scholar
Cramer, M.S. & Best, L.M. 1991 Steady, isentropic flows of dense gases. Phys. Fluids A 3 (4), 219226.CrossRefGoogle Scholar
Cramer, M.S. & Crickenberger, A.B. 1992 Prandtl–Meyer function for dense gases. AIAA J. 30 (2), 561564.CrossRefGoogle Scholar
Crowe, D.S. & Martin, C.L 2015 Effect of geometry on exit temperature from serpentine exhaust nozzles. AIAA Paper 2015-1670.CrossRefGoogle Scholar
Debenedetti, P.G., Tom, J.W., Kwauk, X. & Yeo, S.-D. 1993 Rapid expansion of supercritical solutions (RESS): fundamentals and applications. Fluid Phase Equilib. 82, 311321.CrossRefGoogle Scholar
Debiasi, M., Herberg, M., Zeng, Y., Tsai, H.M. & Dhanabalan, S. 2008 Control of flow separation in S-ducts via flow injection and suction. AIAA Paper 2008-74.CrossRefGoogle Scholar
Dormand, J.R. & Prince, P.J. 1980 A family of embedded Runge–Kutta formulae. J. Comput. Appl. Maths 6 (1), 1926.CrossRefGoogle Scholar
Dossena, V., Marinoni, F., Bassi, F., Franchina, N. & Savini, M. 2013 Numerical and experimental investigation on the performance of safety valves operating with different gases. Intl J. Pres. Ves. Pip. 104, 2129.CrossRefGoogle Scholar
Economon, T.D, Palacios, F., Copeland, S.R., Lukaczyk, T.W. & Alonso, J.J. 2016 SU2: an open-source suite for multiphysics simulation and design. AIAA J. 54 (3), 828846.CrossRefGoogle Scholar
Falcon, M. 1984 Secondary flow in curved open channels. Annu. Rev. Fluid Mech. 16 (1), 179193.CrossRefGoogle Scholar
Fergason, S.H., Guardone, A. & Argrow, B.M. 2003 Construction and validation of a dense gas shock tube. J. Thermophys. Heat Transfer 17 (3), 326333.CrossRefGoogle Scholar
Gajoni, P. 2022 Ideal and non-ideal compressible flows at radial equilibrium. Master's thesis, Politecnico di Milano.CrossRefGoogle Scholar
Gloerfelt, X., Robinet, J.-C., Sciacovelli, L., Cinnella, P. & Grasso, F. 2020 Dense-gas effects on compressible boundary-layer stability. J. Fluid Mech. 893, A19.CrossRefGoogle Scholar
Gori, G., Zocca, M., Cammi, G., Spinelli, A., Congedo, P.M. & Guardone, A. 2020 Accuracy assessment of the non-ideal computational fluid dynamics model for siloxane MDM from the open-source SU2 suite. Eur. J. Mech. (B/Fluids) 79, 109120.CrossRefGoogle Scholar
Harloff, G.J., Smith, C.F., Bruns, J.E. & DeBonis, J.R. 1993 Navier–Stokes analysis of three-dimensional S-ducts. J. Aircraft 30 (4), 526533.CrossRefGoogle Scholar
Lemmon, E.W., Bell, I.H., Huber, M.L. & McLinden, M.O. 2018 NIST Standard Reference Database 23: Reference Fluid Thermodynamic and Transport Properties-REFPROP, Version 10.0, National Institute of Standards and Technology.Google Scholar
Mathijssen, T., Gallo, M., Casati, E., Nannan, N.R., Zamfirescu, C., Guardone, A. & Colonna, P. 2015 The flexible asymmetric shock tube (FAST): a Ludwieg tube facility for wave propagation measurements in high-temperature vapours of organic fluids. Exp. Fluids 56 (10), 112.CrossRefGoogle Scholar
Menikoff, R. & Plohr, B.J. 1989 The Riemann problem for fluid flow of real materials. Rev. Mod. Phys. 61 (1), 75130.CrossRefGoogle Scholar
Ng, Y.T., Luo, S.C., Lim, T.T. & Ho, Q.W. 2011 Three techniques to control flow separation in an S-shaped duct. AIAA J. 49 (9), 18251832.CrossRefGoogle Scholar
Ren, J., Fu, S. & Pecnik, R. 2019 Linear instability of Poiseuille flows with highly non-ideal fluids. J. Fluid Mech. 859, 89125.CrossRefGoogle Scholar
Ren, J. & Kloker, M. 2022 Instabilities in three-dimensional boundary-layer flows with a highly non-ideal fluid. J. Fluid Mech. 951, A9.CrossRefGoogle Scholar
Romei, A., Vimercati, D., Persico, G. & Guardone, A. 2020 Non-ideal compressible flows in supersonic turbine cascades. J. Fluid Mech. 882, A12.CrossRefGoogle Scholar
Smith, L.H. Jr 1966 The radial-equilibrium equation of turbomachinery. J. Engng Power 88 (1), 112.CrossRefGoogle Scholar
Span, R. 2000 Multiparameter Equations of State. Springer.CrossRefGoogle Scholar
Van der Stelt, T., Nannan, N. & Colonna, P. 2012 The iPRSV equation of state. Fluid Phase Equilib. 330, 2435.CrossRefGoogle Scholar
Sun, X.L. & Ma, S. 2022 Influences of key parameters on flow features in the curved ducts with equal area. Proc. Inst. Mech. Engrs 236 (11), 59545967.Google Scholar
Talluri, L. & Lombardi, G. 2017 Simulation and design tool for ORC axial turbine stage. Energy Procedia 129, 277284.CrossRefGoogle Scholar
Taylor, A.M.K.P., Whitelaw, J.H. & Yianneskis, M. 1982 Curved ducts with strong secondary motion: velocity measurements of developing laminar and turbulent flow. Trans. ASME J. Fluids Engng 104 (3), 350359.CrossRefGoogle Scholar
Thol, M., Dubberke, F.H., Baumhögger, E., Vrabec, J. & Span, R. 2017 Speed of sound measurements and fundamental equations of state for octamethyltrisiloxane and decamethyltetrasiloxane. J. Chem. Engng Data 62 (9), 26332648.CrossRefGoogle Scholar
Thol, M., Dubberke, F.H., Rutkai, G., Windmann, T., Köster, A., Span, R. & Vrabec, J. 2016 Fundamental equation of state correlation for hexamethyldisiloxane based on experimental and molecular simulation data. Fluid Phase Equilib. 418, 133151.CrossRefGoogle Scholar
Thompson, P.A. 1971 A fundamental derivative in gasdynamics. Phys. Fluids 14 (9), 18431849.CrossRefGoogle Scholar
Thompson, P.A. 1988 Compressible Fluid Dynamics. McGraw-Hill.Google Scholar
Thompson, P.A. & Lambrakis, K.C. 1973 Negative shock waves. J. Fluid Mech. 60, 187208.CrossRefGoogle Scholar
Toni, L., Bellobuono, E.F., Valente, R., Romei, A., Gaetani, P. & Persico, G. 2022 Computational and experimental assessment of a MW-scale supercritical ${\rm CO}_2$ compressor operating in multiple near-critical conditions. Trans. ASME J. Engng Gas Turbines Power 144 (10), 101015.CrossRefGoogle Scholar
Vakili, A., Wu, J., Liver, P. & Bhat, M. 1983 Measurements of compressible secondary flow in a circular S-duct. AIAA Paper 1983-1739.CrossRefGoogle Scholar
Vimercati, D., Gori, G. & Guardone, A. 2018 Non-ideal oblique shock waves. J. Fluid Mech. 847, 266285.CrossRefGoogle Scholar
Vitale, S., Gori, G., Pini, M., Guardone, A., Economon, T.D., Palacios, F., Alonso, J.J. & Colonna, P. 2015 Extension of the SU2 open source CFD code to the simulation of turbulent flows of fuids modelled with complex thermophysical laws. AIAA Paper 2015-2760.CrossRefGoogle Scholar
Wellborn, S., Reichert, B. & Okiishi, T. 1992 An experimental investigation of the flow in a diffusing S-duct. AIAA Paper 1992-3622.CrossRefGoogle Scholar
White, M.T., Bianchi, G., Chai, L., Tassou, S.A & Sayma, A.I. 2021 Review of supercritical ${\rm CO}_2$ technologies and systems for power generation. Appl. Therm. Engng 185, 116447.CrossRefGoogle Scholar
Wu, C.-H. & Wolfenstein, L. 1950 Application of radial-equilibrium condition to axial-flow compressor and turbine design. Tech. Rep. NACA-TR-955. NACA.Google Scholar
Zel'dovich, Y.B. 1946 On the possibility of rarefaction shock waves. Zh. Eksp. Teor. Fiz. 4, 363364.Google Scholar
Zocca, M., Gajoni, P. & Guardone, A. 2023 NIMOC: a design and analysis tool for supersonic nozzles under non-ideal compressible flow conditions. J. Comput. Appl. Maths 429, 115210.CrossRefGoogle Scholar