Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-27T08:36:48.107Z Has data issue: false hasContentIssue false

Hysteresis and instabilities in a spheroid in precession near the resonance with the tilt-over mode

Published online by Cambridge University Press:  23 December 2020

C. Nobili
Affiliation:
IRPHE, UMR 7342, CNRS, Aix-Marseille Université, Centrale Marseille, 49 rue Joliot-Curie, 13013Marseille, France
P. Meunier*
Affiliation:
IRPHE, UMR 7342, CNRS, Aix-Marseille Université, Centrale Marseille, 49 rue Joliot-Curie, 13013Marseille, France
B. Favier
Affiliation:
IRPHE, UMR 7342, CNRS, Aix-Marseille Université, Centrale Marseille, 49 rue Joliot-Curie, 13013Marseille, France
M. Le Bars
Affiliation:
IRPHE, UMR 7342, CNRS, Aix-Marseille Université, Centrale Marseille, 49 rue Joliot-Curie, 13013Marseille, France
*
Email address for correspondence: meunier@irphe.univ-mrs.fr

Abstract

This study explores experimentally the flows driven by precession in an oblate spheroid, in the vicinity of the possible resonance with the tilt-over mode. Two main phenomena are reported, combining observations and velocity measurements. First, a hysteretic cycle is quantitatively described between two uniform vorticity solutions, in good agreement with the historical analytical study of Busse (J. Fluid Mech., vol. 33, 1968, pp. 739–752). We then address the destabilization of each branch at low enough Ekman number. We confirm the possible presence of a so-called conical shear instability, recently depicted in the sphere by Lin et al. (Phys. Fluids, vol. 27, 2015, 046601) and in the spheroid by Horimoto et al. (Phys. Rev. Fluids, vol. 5, 2020, 063901). However, available measurements in the accessible parameter range are not sufficient to definitively discard an elliptical or shear origin of the excited instabilities in the spheroid, as first introduced by Kerswell (Geophys. Astrophys. Fluid Dyn., vol. 72, 1993, pp. 107–144).

Type
JFM Papers
Copyright
© The Author(s), 2020. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Boisson, J., Cébron, D., Moisy, F. & Cortet, P.-P. 2012 Earth rotation prevents exact solid-body rotation of fluids in the laboratory. Europhys. Lett. 98 (5), 59002.CrossRefGoogle Scholar
Brunet, M., Gallet, B. & Cortet, P.-P. 2020 Shortcut to geostrophy in wave-driven rotating turbulence: the quartetic instability. Phys. Rev. Lett. 124 (12), 124501.CrossRefGoogle ScholarPubMed
Bullard, E. C. 1949 The magnetic field within the earth. Proc. R. Soc. Lond. A 197 (1051), 433453.Google Scholar
Busse, F. H. 1968 Steady fluid flow in a precessing spheroidal shell. J. Fluid Mech. 33, 739752.CrossRefGoogle Scholar
Cébron, D. 2015 Bistable flows in precessing spheroids. Fluid Dyn. Res. 47, 025504.CrossRefGoogle Scholar
Cébron, D., Laguerre, R., Noir, J. & Schaeffer, N. 2019 Precessing spherical shells: flows, dissipation, dynamo and the lunar core. Geophys. J. Intl 219 (Suppl. 1), S34S57.CrossRefGoogle Scholar
Cébron, D., Le Bars, M. & Meunier, P. 2010 Tilt-over mode in a precessing triaxial ellipsoid. Phys. Fluids 22 (11), 116601.CrossRefGoogle Scholar
Gans, R. F. 1970 On the precession of a resonant cylinder. J. Fluid Mech. 476, 865872.CrossRefGoogle Scholar
Goepfert, O. & Tilgner, A. 2016 Dynamos in precessing cubes. New J. Phys. 18 (10), 103019.CrossRefGoogle Scholar
Goto, S., Fujiwara, M. & Yamato, M. 2011 Turbulence sustained in a precessing sphere and spheroids. In Seventh International Symposium on Turbulence and Shear Flow Phenomena. Begell House.Google Scholar
Goto, S., Matsunaga, A., Fujiwara, M., Nishioka, M., Kida, S., Yamato, M. & Tsuda, S. 2014 Turbulence driven by precession in spherical and slightly elongated spheroidal cavities. Phys. Fluids 26, 055107.CrossRefGoogle Scholar
Grannan, A. M., Le Bars, M., Cébron, D. & Aurnou, J. M. 2014 Experimental study of global-scale turbulence in a librating ellipsoid. Phys. Fluids 26 (12), 126601.CrossRefGoogle Scholar
Greenspan, H. P. 1968 The Theory of Rotating Fluids. Cambridge University Press.Google Scholar
Herault, J., Gundrum, T., Giesecke, A. & Stefani, F. 2015 Subcritical transition to turbulence of a precessing flow in a cylindrical vessel. Phys. Fluids 27 (12), 124102.CrossRefGoogle Scholar
Horimoto, Y., Katayama, A. & Goto, S. 2020 Conical shear-driven parametric instability of steady flow in precessing spheroids. Phys. Rev. Fluids 5, 063901.CrossRefGoogle Scholar
Horimoto, Y., Simonet-Davin, G., Katayama, A. & Goto, S. 2018 Impact of a small ellipticity on the sustainability condition of developed turbulence in a precessing spheroid. Phys. Rev. Fluids 3 (4), 044603.CrossRefGoogle Scholar
Hough, S. S. 1895 The oscillations of a rotating ellipsoidal shell containing fluid. Phil. Trans. R. Soc. Lond. A 186, 469506.Google Scholar
Kerswell, R. R. 1993 The instability of precessing flow. Geophys. Astrophys. Fluid Dyn. 72, 107144.CrossRefGoogle Scholar
Kerswell, R. R. 1996 Upper bounds on the energy dissipation in turbulent precession. J. Fluid Mech. 321, 335370.CrossRefGoogle Scholar
Kida, S. 2011 Steady flow in a rapidly rotating sphere with weak precession. J. Fluid Mech. 680, 150193.CrossRefGoogle Scholar
Kida, S. 2013 Instability by weak precession of the flow in a rotating sphere. Proc. IUTAM 7, 180192.Google Scholar
Kida, S. 2018 Steady flow in a rotating sphere with strong precession. Fluid Dyn. Res. 50 (2), 021401.CrossRefGoogle Scholar
Kida, S. 2019 Instability by localized disturbances in critical region in a precessing sphere. Fluid Dyn. Res. 52 (1), 015504.CrossRefGoogle Scholar
Kida, S. 2020 Steady flow in a rapidly rotating spheroid with weak precession: I. Fluid Dyn. Res. 52 (1), 015513.CrossRefGoogle Scholar
Lagrange, R., Meunier, P., Nadal, F. & Eloy, C. 2011 Precessional instability of a fluid cylinder. J. Fluid Mech. 666, 104145.CrossRefGoogle Scholar
Le Bars, M., Cébron, D. & Le Gal, P. 2015 Flows driven by libration, precession, and tides. Annu. Rev. Fluid Mech. 47, 163193.CrossRefGoogle Scholar
Le Bars, M., Lacaze, L., Le Dizès, S., Le Gal, P. & Rieutord, M. 2010 Tidal instability in stellar and planetary binary systems. Phys. Earth Planet. Inter. 178 (1–2), 4855.CrossRefGoogle Scholar
Le Reun, T., Favier, B. & Le Bars, M. 2019 Experimental study of the nonlinear saturation of the elliptical instability: inertial wave turbulence versus geostrophic turbulence. J. Fluid Mech. 879, 296326.CrossRefGoogle Scholar
Lemasquerier, D., Grannan, A. M., Vidal, J., Cébron, D., Favier, B., Le Bars, M. & Aurnou, J. M. 2017 Libration-driven flows in ellipsoidal shells. J. Geophys. Res. 122 (9), 19261950.CrossRefGoogle Scholar
Lin, Y., Marti, P. & Noir, J. 2015 Shear-driven parametric instability in a precessing sphere. Phys. Fluids 27, 046601.CrossRefGoogle Scholar
Lorenzani, S. & Tilgner, A. 2001 Fluid instabilities in precessing spheroidal cavities. J. Fluid Mech. 447, 111128.CrossRefGoogle Scholar
Lorenzani, S. & Tilgner, A. 2003 Inertial instabilities of fluid flow in precessing spheroidal shells. J. Fluid Mech. 492, 363379.CrossRefGoogle Scholar
Malkus, W. V. R. 1968 Precession of the Earth as the cause of geomagnetism. Science 160, 259264.CrossRefGoogle ScholarPubMed
Meunier, P., Eloy, C., Lagrange, R. & Nadal, F. 2008 A rotating fluid cylinder subject to weak precession. J. Fluid Mech. 599, 405440.CrossRefGoogle Scholar
Meunier, P. & Leweke, T. 2003 Analysis and minimization of errors due to high gradients in particle image velocimetry. Exp. Fluids 35, 408421.CrossRefGoogle Scholar
Noir, J., Cardin, P., Jault, D. & Masson, J. P. 2003 Experimental evidence of nonlinear resonance effects between retrograde precession and the tilt-over mode within a spheroid. Geophys. J. Intl 154, 407416.CrossRefGoogle Scholar
Noir, J. & Cébron, D. 2013 Precession-driven flows in non-axisymmetric ellipsoids. J. Fluid Mech. 737, 412439.CrossRefGoogle Scholar
Noir, J., Jault, D. & Cardin, P. 2001 Numerical study of the motions within a slowly precessing sphere at low Ekman number. J. Fluid Mech. 437, 283–29.CrossRefGoogle Scholar
Poincaré, H. 1910 Sur la précession des corps déformables. Bull. Astro. 27, 257264.Google Scholar
Sloudsky, T. 1895 De la rotation de la terre supposée fluide à son intérieur. Bull. Soc. Imp. Natur. Mosc. IX, 285318.Google Scholar
Sous, D., Sommeria, J. & Boyer, D. 2013 Friction law and turbulent properties in a laboratory Ekman boundary layer. Phys. Fluids 25 (4), 046602.CrossRefGoogle Scholar
Stewartson, K. & Roberts, P. H. 1963 On the motion of a liquid in a spheroidal cavity of a precessing rigid body. J. Fluid Mech. 17, 120.CrossRefGoogle Scholar
Triana, S. A., Zimmerman, D. S. & Lathrop, D. P. 2012 Precessional states in a laboratory model of the earth's core. J. Geophys. Res. 117, B4.Google Scholar
Vanyo, J. P. 1993 Rotating Fluids in Engineering and Science. Dover.Google Scholar
Vanyo, J. P., Wilde, P. & Cardin, P. 1995 Experiments on precessing flows in the earth's liquid core. Geophys. J. Intl 121, 136142.CrossRefGoogle Scholar
Wu, C.-C. & Roberts, P. H. 2009 On a dynamo driven by topographic precession. Geophys. Astrophys. Fluid Dyn. 103 (6), 467501.CrossRefGoogle Scholar
Wu, C. C. & Roberts, P. H. 2011 High order instabilities of the poincaré solution for precessionally driven flow. Geophys. Astrophys. Fluid Dyn. 105, 287303.CrossRefGoogle Scholar
Zhang, K., Chan, K. H. & Liao, X. 2014 On precessing flow in an oblate spheroid of arbitrary eccentricity. J. Fluid Mech. 743, 358384.CrossRefGoogle Scholar

Nobili et al. supplementary movie 1

Visualisation of the transition from the first to the second Busse solution, when the Poincaré number decreases from Po=-0.087 to Po=-0.091.

Download Nobili et al. supplementary movie 1(Video)
Video 6.6 MB

Nobili et al. supplementary movie 2

Visualisation of the transition from the first to the second Busse solution, when the Poincaré number decreases from Po=-0.087 to Po=-0.091.

Download Nobili et al. supplementary movie 2(Video)
Video 10 MB

Nobili et al. supplementary movie 3

Visualisation of the transition from the second to the first Busse solution, when the Poincaré number increases from Po=-0.063 to Po=-0.061.

Download Nobili et al. supplementary movie 3(Video)
Video 10 MB