Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-27T14:15:06.521Z Has data issue: false hasContentIssue false

Hypersonic flow over spherically blunted double cones

Published online by Cambridge University Press:  05 June 2020

Jiaao Hao
Affiliation:
Department of Mechanical Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong
Chih-Yung Wen*
Affiliation:
Department of Mechanical Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong Interdisciplinary Division of Aeronautical and Aviation Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong
*
Email address for correspondence: cywen@polyu.edu.hk

Abstract

A hypersonic shock wave/laminar boundary-layer interaction over a canonical $25{-}55^{\circ }$ double-cone configuration is numerically investigated. A moderate-enthalpy flow of $5~\text{MJ}~\text{kg}^{-1}$ with a Mach number of 9.87 and a unit Reynolds number of $1.5\times 10^{5}~\text{m}^{-1}$ is considered. Special emphasis is given to the influence of leading-edge bluntness. The results indicate that the double-cone flow is insensitive to small bluntness in terms of shock structures, separation region sizes and surface pressure and heat flux distributions. A critical nose radius is observed, beyond which the separation bubble grows dramatically. The numerical data are analysed and interpreted based on a triple-deck formulation. It is shown that the sudden change in flow features is mainly caused by pressure overexpansion on the first cone due to leading-edge bluntness, such that the skin friction upstream of the separation is significantly reduced and the upstream pressure can no longer resist the large adverse pressure gradient induced by shock impingement. An estimation of the critical radius is established based on the pressure correlations of Blick & Francis (AIAA J., vol. 4 (3), 1966, pp. 547–549) for spherically blunted cones. Simulations at a higher enthalpy with the presence of both vibrational relaxation and air chemistry show a similar trend with increasing nose radius. The proposed criterion agrees well with the experimental observations.

Type
JFM Papers
Copyright
© The Author(s), 2020. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anderson, J. D. Jr. 2006 Hypersonic and High-Temperature Gas Dynamics, 2nd edn. American Institute of Aeronautics and Astronautics.CrossRefGoogle Scholar
Babinsky, H. & Harvey, J. K. 2011 Shock Wave–Boundary-layer Interactions. Cambridge University Press.CrossRefGoogle Scholar
Bertin, J. J. 1994 Hypersonic Aerothermodynamics. American Institute of Aeronautics and Astronautics.CrossRefGoogle Scholar
Blick, E. F. & Francis, J. E. 1966 Spherically blunted cone pressure distributions. AIAA J. 4 (3), 547549.CrossRefGoogle Scholar
Borovoy, V. Y., Egorov, I. V., Skuratov, A. S. & Struminskaya, I. V. 2013 Two-dimensional shock-wave/boundary-layer interaction in the presence of entropy layer. AIAA J. 51 (1), 8093.CrossRefGoogle Scholar
Chapman, D. R., Kuehn, D. M. & Larson, H. K.1958 Investigation of separated flows in supersonic and subsonic streams with emphasis on the effect of transition. NACA Tech. Rep. 1356.Google Scholar
Chuvakhov, P. V., Borovoy, V. Ya., Egorov, I. V., Radchenko, V. N., Olivier, H. & Roghelia, A. 2017 Effect of small bluntness on formation of Görtler vortices in a supersonic compression corner flow. J. Appl. Mech. Tech. Phys. 58 (6), 975989.CrossRefGoogle Scholar
Davis, J.-P. & Sturtevant, B. 2000 Separation length in high-enthalpy shock/boundary-layer interaction. Phys. Fluids 12 (10), 26612687.CrossRefGoogle Scholar
Druguet, M.-C., Candler, G. & Nompelis, V. I. 2005 Effect of numerics on Navier–Stokes computations of hypersonic double-cone flows. AIAA J. 43 (3), 616623.CrossRefGoogle Scholar
Edney, B. E. 1968 Effects of shock impingement on the heat transfer around blunt bodies. AIAA J. 6 (1), 1521.CrossRefGoogle Scholar
Gaitonde, D. V., Canupp, P. W. & Holden, M. S. 2002 Heat transfer predictions in a laminar hypersonic viscous/inviscid interaction. J. Thermophys. Heat Transfer 16 (4), 481489.CrossRefGoogle Scholar
Gaitonde, D. V. 2015 Progress in shock wave/boundary layer interactions. Prog. Aerosp. Sci. 72, 8099.CrossRefGoogle Scholar
Gnoffo, P. A., Gupta, R. N. & Shinn, J. L.1989 Conservation equations and physical models for hypersonic air flows in thermal and chemical nonequilibrium. NASA Tech. Paper 2867.Google Scholar
Gupta, R. N., Yos, J. M., Thompson, R. A. & Lee, K. P.1990 A review of reaction and thermodynamic and transport properties for an 11-species air model for chemical and thermal nonequilibrium calculations to 30 000 K. NASA Tech. Rep. 1232.Google Scholar
Hao, J., Wang, J. & Lee, C. 2016 Numerical study of hypersonic flows over reentry configurations with different chemical nonequilibrium models. Acta Astronaut. 126, 110.CrossRefGoogle Scholar
Hao, J., Wang, J. & Lee, C. 2017 Numerical simulation of high-enthalpy double-cone flows. AIAA J. 55 (7), 24712475.CrossRefGoogle Scholar
Hao, J., Wang, J. & Lee, C. 2018 Numerical simulation of high-enthalpy hollow-cylinder/flare flows. AIAA J. 55 (7), 24712475.CrossRefGoogle Scholar
Hao, J. & Wen, C. Y. 2018a Numerical investigation of oxygen thermochemical nonequilibrium on high-enthalpy double-cone flows. Intl J. Heat Mass Transfer 127, 892902.CrossRefGoogle Scholar
Hao, J. & Wen, C. Y. 2018b Effects of vibrational nonequilibrium on hypersonic shock-wave/laminar boundary-layer interactions. Intl Commun. Heat Mass Transfer 97, 136142.CrossRefGoogle Scholar
Hao, J., Wen, C. Y. & Wang, J. 2019 Numerical investigation of hypervelocity shock-wave/boundary-layer interactions over a double-wedge configuration. Intl J. Heat Mass Transfer 138, 277292.CrossRefGoogle Scholar
Hash, D., Olejniczak, J., Wright, M., Prabhu, D., Pulsonetti, M., Hollis, B., Gnoffo, P., Barnhardt, M., Nompelis, I. & Candler, G.2007 FIRE II calculations for hypersonic nonequilibrium aerothermodynamics code verification: DPLR, LAURA, and US3D. AIAA Paper 2007-605.CrossRefGoogle Scholar
Holden, M. S. 1970 Boundary-layer displacement and leading-edge bluntness effects on attached and separated laminar boundary layers in a compression corner. Part 1. Theoretical study. AIAA J. 8 (12), 21792188.CrossRefGoogle Scholar
Holden, M. S. 1971 Boundary-layer displacement and leading-edge bluntness effects on attached and separated laminar boundary layers in a compression corner. Part 2. Experimental study. AIAA J. 9 (1), 8493.CrossRefGoogle Scholar
Holden, M. S.2000 Experimental studies of laminar separated flows induced by shock wave/boundary layer and shock/shock interaction in hypersonic flows for CFD validation. AIAA Paper 2000-0930.CrossRefGoogle Scholar
Holden, M. S. & Wadhams, T. P.2003 A database of aerothermal measurements in hypersonic flow in ‘building block’ experiments for CFD validation. AIAA Paper 2003-1137.CrossRefGoogle Scholar
Holden, M. S., Wadhams, T. P., Harvey, J. K. & Candler, G. V.2006 Comparisons between measurements in regions of laminar shock wave boundary layer interaction in hypersonic flows with Navier–Stokes and DSMC solutions. Defense Technical Information Center. RTO-TR-AVT-007-V3.Google Scholar
Holden, M. S., Wadhams, T. P. & Maclean, M.2008 Experimental studies in the LENS supersonic and hypersonic tunnels for hypervelocity vehicle performance and code validation. AIAA Paper 2008-2505.CrossRefGoogle Scholar
Holden, M. S., Wadhams, T. P., Maclean, M. & Dufrene, A.2015 Experimental research and analysis in supersonic and hypervelocity flows in the LENS shock tunnels and expansion tunnel. AIAA Paper 2015-3660.CrossRefGoogle Scholar
Holden, M. S., Wadhams, T. P., Maclean, P. R., Dufrene, A. & Carr, Z. R.2018 Experimental studies and analysis to investigate the characteristics of real gas air flows in regions of shock wave boundary layer interaction over a blunted double cone configuration. AIAA Paper 2018-5164.CrossRefGoogle Scholar
John, B. & Kulkarni, V. 2014 Effect of leading edge bluntness on the interaction of ramp induced shock wave with laminar boundary layer at hypersonic speed. Comput. Fluids. 96, 177190.CrossRefGoogle Scholar
Khraibut, A., Gai, S. L., Brown, L. M. & Neely, A. J. 2017 Laminar hypersonic leading edge separation – a numerical study. J. Fluid Mech. 821, 624646.CrossRefGoogle Scholar
Khraibut, A., Gai, S. L. & Neely, A. J. 2019 Numerical study of bluntness effects on laminar leading edge separation in hypersonic flow. J. Fluid Mech. 878, 386419.CrossRefGoogle Scholar
Knight, D., Longo, J., Drikakis, D., Gaitonde, D., Lani, A., Nompelis, I., Reimann, B. & Walpot, L. 2012 Assessment of CFD capability for prediction of hypersonic shock interactions. Prog. Aerosp. Sci. 48–49, 826.CrossRefGoogle Scholar
Korolev, G. L., Gajjar, J. B. & Ruban, A. I. 2002 Once again on the supersonic flow separation near a corner. J. Fluid Mech. 463, 173199.CrossRefGoogle Scholar
van Leer, B. 1979 Towards the ultimate conservative difference scheme. J. Comput. Phys. 32 (1), 101136.CrossRefGoogle Scholar
MacCormack, R. W. 2014 Numerical Computation of Compressible and Viscous Flow. American Institute of Aeronautics and Astronautics.CrossRefGoogle Scholar
Millikan, R. C. & White, D. R. 1963 Systematics of vibrational relaxation. J. Chem. Phys. 39 (12), 32093213.CrossRefGoogle Scholar
Neiland, V. Y. 1969 Theory of laminar boundary layer separation in supersonic flow. Fluid Dyn. 4 (4), 3335.Google Scholar
Neiland, V. Y. 1971 Flow behind the boundary layer separation point in a supersonic stream. Fluid Dyn. 6 (3), 378384.CrossRefGoogle Scholar
Nompelis, I., Candler, G. V. & Holden, M. S. 2003 Effect of vibrational nonequilibrium on hypersonic double-cone experiments. AIAA J. 41 (11), 21622169.CrossRefGoogle Scholar
Olejniczak, J., Wright, M. J. & Candler, G. V. 1997 Numerical study of inviscid shock interactions on double-wedge geometries. J. Fluid Mech. 352, 125.CrossRefGoogle Scholar
Park, C. 1990 Nonequilibrium Hypersonic Aerothermodynamics. Wiley.Google Scholar
Sidharth, G. S., Dwivedi, A., Candler, G. V. & Nichols, J. W. 2018 Onset of three-dimensionality in supersonic flow over a slender double wedge. Phys. Rev. Fluids 3, 093901.Google Scholar
Smith, F. T. & Khorrami, A. F. 1991 The interactive breakdown in supersonic ramp flow. J. Fluid Mech. 224, 197215.CrossRefGoogle Scholar
Sriram, R., Srinath, L., Devaraj, M. K. K. & Jagadeesh, G. 2016 On the length scales of hypersonic shock-induced large separation bubbles near leading edges. J. Fluid Mech. 806, 304355.CrossRefGoogle Scholar
Stewartson, K. & Williams, P. G. 1969 Self-induced separation. Proc. R. Soc. Lond. A 312, 181206.Google Scholar
Stewartson, K. & Williams, P. G. 1973 On self-induced separation II. Mathematika 20, 98108.CrossRefGoogle Scholar
Sutton, K. & Gnoffo, P. A.1998 Multi-component diffusion with application to computational aerothermodynamics. AIAA Paper 98-2575.CrossRefGoogle Scholar
Swantek, A.2012 The role of aerothermochemistry in double cone and double wedge flows. PhD dissertation, UIUC.Google Scholar
Tumuklu, O., Theofilis, V. & Levin, D. A. 2018 On the unsteadiness of shock–laminar boundary layer interactions of hypersonic flows over a double cone. Phys. Fluids. 30, 106111.Google Scholar
Vincenti, W. G. & Kruger, C. H. 1965 Introduction to Physical Gas Dynamics. Krieger.Google Scholar
Wright, M. J., Candler, G. V. & Bose, D. 1998 Data-parallel line relaxation method for the Navier–Stokes equations. AIAA J. 36 (9), 16031609.CrossRefGoogle Scholar
Wright, M. J., Bose, D., Palmer, G. E. & Levin, E. 2005 Recommended collision integrals for transport property computations. Part 1. Air species. AIAA J. 43 (12), 25582564.CrossRefGoogle Scholar