Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-26T11:42:41.198Z Has data issue: false hasContentIssue false

Hydrodynamic roughness induced by a multiscale topography

Published online by Cambridge University Press:  26 October 2023

Pan Jia*
Affiliation:
School of Science, Harbin Institute of Technology, 518055 Shenzhen, P.R. China
Bruno Andreotti
Affiliation:
Laboratoire de Physique de l'ENS, UMR 8550 Ecole Normale Supérieure – CNRS – Université PSL – Université de Paris – Sorbonne Université, 24 rue Lhomond, 75005 Paris, France
Philippe Claudin
Affiliation:
Physique et Mécanique des Milieux Hétérogènes, UMR 7636 CNRS – ESPCI Paris – Université PSL – Université de Paris – Sorbonne Université, 10 rue Vauquelin, 75005 Paris, France
*
Email address for correspondence: jiapan@hit.edu.cn

Abstract

Turbulent flows above a solid surface are characterised by a hydrodynamic roughness that represents, for the far velocity field, the typical length scale at which momentum mixing occurs close to the surface. Here, we are theoretically interested in the hydrodynamic roughness induced by a two-dimensional modulated surface, the elevation profile of which is decomposed in Fourier modes. We describe the flow for a sinusoidal mode of given wavelength and amplitude with Reynolds-averaged Navier–Stokes equations closed by means of a mixing-length approach that takes into account a possible surface geometrical roughness as well as the presence of a viscous sublayer. It also incorporates spatial transient effects at the laminar–turbulent transition. Performing a weekly nonlinear expansion in the bedform aspect ratio, we predict the effective hydrodynamic roughness when the surface wavelength is varied and we show that it presents a non-monotonic behaviour at the laminar–turbulent transition when the surface is hydrodynamically smooth. Further, with a self-consistent looped calculation, we are able to recover the smooth–rough transition of a flat surface, for which the hydrodynamic roughness changes from a regime where it is dominated by the viscous length to another one where it scales with the surface corrugation. We finally apply the results to natural patterns resulting from hydrodynamic instabilities such as those associated with dissolution or sediment transport. We discuss in particular the aspect ratio selection of dissolution bedforms and roughness hierarchy in superimposed ripples and dunes.

Type
JFM Papers
Copyright
© The Author(s), 2023. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Andreotti, B. 2004 A two-species model of aeolian sand transport. J. Fluid Mech. 510, 4770.CrossRefGoogle Scholar
Andreotti, B., Claudin, P., Iversen, J.J., Merrison, J.P. & Rasmussen, K.R. 2021 A lower-than-expected saltation threshold at martian pressure and below. Proc. Natl Acad. Sci. USA 118 (5), e2012386118.CrossRefGoogle ScholarPubMed
Ashton, G.D. & Kennedy, J.F. 1972 Ripples on underside of river ice covers. J. Hydraul. Div. 98 (9), 16031624.CrossRefGoogle Scholar
Aulnette, M., Rabaud, M. & Moisy, F. 2019 Wind-sustained viscous solitons. Phys. Rev. Fluids 4 (8), 084003.CrossRefGoogle Scholar
Ayotte, K.W., Xu, D.P. & Taylor, P.A. 1994 The impact of turbulence closure schemes on predictions of the mixed spectral finite-difference model for flow over topography. Boundary-Layer Meteorol 68 (1), 133.CrossRefGoogle Scholar
Bagnold, R.A. 1941 The Physics of Blown Sand and Desert Dunes. Methuen.Google Scholar
Benjamin, T.B. 1959 Shearing flow over a wavy boundary. J. Fluid Mech. 6 (2), 161205.CrossRefGoogle Scholar
Bordiec, M., Carpy, S., Bourgeois, O., Herny, C., Massé, M., Perret, L., Claudin, P., Pochat, S. & Douté, S. 2020 Sublimation waves: geomorphic markers of interactions between icy planetary surfaces and winds. Earth-Sci. Rev. 211, 103350.CrossRefGoogle Scholar
Bradley, E.F. 1980 An experimental study of the profiles of wind speed, shearing stress and turbulence at the crest of a large hill. Q. J. R. Meteorol. Soc. 106 (447), 101123.CrossRefGoogle Scholar
Brown, S., Nickling, W.G. & Gillies, J.A. 2008 A wind tunnel examination of shear stress partitioning for an assortment of surface roughness distributions. J. Geophys. Res. Earth Surf. 113, F02S06.CrossRefGoogle Scholar
Bushuk, M., Yang, X., Winton, M., Msadek, R., Harrison, M., Rosati, A. & Gudgel, R. 2019 The value of sustained ocean observations for sea ice predictions in the Barents Sea. J. Clim. 32 (20), 70177035.CrossRefGoogle Scholar
Charru, F., Andreotti, B. & Claudin, P. 2013 Sand ripples and dunes. Annu. Rev. Fluid Mech. 45, 469493.CrossRefGoogle Scholar
Charru, F. & Hinch, E.J. 2000 ‘Phase diagram’ of interfacial instabilities in a two-layer Couette flow and mechanism of the long-wave instability. J. Fluid Mech. 414, 195223.CrossRefGoogle Scholar
Cheng, H., Hayden, P., Robins, A.G. & Castro, I.P. 2007 Flow over cube arrays of different packing densities. J. Wind Engng Ind. Aerodyn. 95 (8), 715740.CrossRefGoogle Scholar
Choi, H., Jeon, W.P. & Kim, J. 2008 Control of flow over a bluff body. Annu. Rev. Fluid Mech. 40, 113139.CrossRefGoogle Scholar
Chung, D., Hutchins, N., Schultz, M.P. & Flack, K.A. 2021 Predicting the drag of rough surfaces. Annu. Rev. Fluid Mech. 53, 439471.CrossRefGoogle Scholar
Claudin, P., Durán, O. & Andreotti, B. 2017 Dissolution instability and roughening transition. J. Fluid Mech. 832, R2.CrossRefGoogle Scholar
Claudin, P., Louge, M. & Andreotti, B. 2021 Basal pressure variations induced by a turbulent flow over a wavy surface. Front. Phys. 9, 682564.CrossRefGoogle Scholar
Colombini, M. 2004 Revisiting the linear theory of sand dune formation. J. Fluid Mech. 502, 116.CrossRefGoogle Scholar
Colombini, M. & Stocchino, A. 2011 Ripple and dune formation in rivers. J. Fluid Mech. 673, 121131.CrossRefGoogle Scholar
Crago, R.D., Okello, W. & Jasinski, M.F. 2012 Equations for the drag force and aerodynamic roughness length of urban areas with random building heights. Boundary-Layer Meteorol. 145 (3), 423437.CrossRefGoogle Scholar
De Angelis, V., Lombardi, P. & Banerjee, S. 1997 Direct numerical simulation of turbulent flow over a wavy wall. Phys. Fluids 9 (8), 24292442.CrossRefGoogle Scholar
De Langre, E. 2008 Effects of wind on plants. Annu. Rev. Fluid Mech. 40, 141168.CrossRefGoogle Scholar
Dong, Z., Liu, X. & Wang, X. 2002 Aerodynamic roughness of gravel surfaces. Geomorphology 43 (1–2), 1731.CrossRefGoogle Scholar
Durán, O., Claudin, P. & Andreotti, B. 2011 On aeolian transport: grain-scale interactions, dynamical mechanisms and scaling laws. Aeolian Res. 3 (3), 243270.CrossRefGoogle Scholar
Durán Vinent, O., Andreotti, B., Claudin, P. & Winter, C. 2019 A unified model of ripples and dunes in water and planetary environments. Nat. Geosci. 12 (5), 345350.CrossRefGoogle Scholar
Elbelrhiti, H., Claudin, P. & Andreotti, B. 2005 Field evidence for surface-wave-induced instability of sand dunes. Nature 437 (7059), 720723.CrossRefGoogle ScholarPubMed
Engelund, F. 1977 Hydraulic resistance for flow over dunes. Prog. Rep. 44, 19M20.Google Scholar
Fang, C. & Sill, B.L. 1992 Aerodynamic roughness length: correlation with roughness elements. J. Wind Engng Ind. Aerodyn. 41 (1–3), 449460.CrossRefGoogle Scholar
Finnigan, J.J. 1988 Air flow over complex terrain. Flow and Transport in the Natural Environment: Advances and Applications, pp. 183–229. Springer.CrossRefGoogle Scholar
Flack, K.A & Schultz, M.P 2010 Review of hydraulic roughness scales in the fully rough regime. J. Fluids Engng 132 (4), 041203.CrossRefGoogle Scholar
Fourrière, A., Claudin, P. & Andreotti, B. 2010 Bedforms in a turbulent stream: formation of ripples by primary linear instability and of dunes by nonlinear pattern coarsening. J. Fluid Mech. 649, 287328.CrossRefGoogle Scholar
Frederick, K.A. & Hanratty, T.J. 1988 Velocity measurements for a turbulent nonseparated flow over solid waves. Exp. Fluids 6 (7), 477486.CrossRefGoogle Scholar
Gillette, D.A., Marticorena, B. & Bergametti, G. 1998 Change in the aerodynamic roughness height by saltating grains: experimental assessment, test of theory, and operational parameterization. J. Geophys. Res. Atmos. 103 (D6), 62036209.CrossRefGoogle Scholar
Gillies, J.A., Nickling, W.G. & King, J. 2007 Shear stress partitioning in large patches of roughness in the atmospheric inertial sublayer. Boundary-Layer Meteorol. 122 (2), 367396.CrossRefGoogle Scholar
Gomé, S., Tuckerman, L.S. & Barkley, D. 2022 Extreme events in transitional turbulence. Phil. Trans. R. Soc. A 380 (2226), 20210036.CrossRefGoogle ScholarPubMed
Gunn, A. & Jerolmack, D.J. 2022 Conditions for aeolian transport in the solar system. Nat. Astron. 6 (8), 923929.CrossRefGoogle Scholar
Han, C., Ma, Y., Su, Z., Chen, X., Zhang, L., Li, M. & Sun, F. 2015 Estimates of effective aerodynamic roughness length over mountainous areas of the tibetan plateau. Q. J. R. Meteorol. Soc. 141 (689), 14571465.CrossRefGoogle Scholar
Hanratty, T.J. 1981 Stability of surfaces that are dissolving or being formed by convective diffusion. Annu. Rev. Fluid Mech. 13 (1), 231252.CrossRefGoogle Scholar
Hobson, J.M., Wood, N. & Brown, A.R. 1999 Large-eddy simulations of neutrally stratified flow over surfaces with spatially varying roughness length. Q. J. R. Meteorol. Soc. 125 (558), 19371958.CrossRefGoogle Scholar
Hunt, J.C.R., Leibovich, S. & Richards, K.J. 1988 Turbulent shear flows over low hills. Q. J. R. Meteorol. Soc. 114 (484), 14351470.CrossRefGoogle Scholar
Jackson, P.S. & Hunt, J.C.R. 1975 Turbulent wind flow over a low hill. Q. J. R. Meteorol. Soc. 101 (430), 929955.CrossRefGoogle Scholar
Jacobs, S.J. 1989 Effective roughness length for turbulent flow over a wavy surface. J. Phys. Oceanogr. 19 (7), 9981010.2.0.CO;2>CrossRefGoogle Scholar
Jasinski, M.F. & Crago, R.D. 1999 Estimation of vegetation aerodynamic roughness of natural regions using frontal area density determined from satellite imagery. Agric. Forest Meteorol. 94 (1), 6577.CrossRefGoogle Scholar
Jia, P., Andreotti, B. & Claudin, P. 2017 Giant ripples on comet 67P/Churyumov–Gerasimenko sculpted by sunset thermal wind. Proc. Natl Acad. Sci. USA 114 (10), 25092514.CrossRefGoogle ScholarPubMed
Jiménez, J. 2004 Turbulent flows over rough walls. Annu. Rev. Fluid Mech. 36, 173196.CrossRefGoogle Scholar
Johnson, P.L. & Johnston, J.P. 1989 Active and inactive motions in a turbulent boundary layer-interactions with free-stream turbulence. In 7th Symposium on Turbulent Shear Flows (Stanford, CA), vol. 2, pp. 20–22. Pennsylvania State University.Google Scholar
Kadivar, M., Tormey, D. & McGranaghan, G. 2021 A review on turbulent flow over rough surfaces: fundamentals and theories. Intl J. Thermofluids 10, 100077.CrossRefGoogle Scholar
Kametani, Y., Fukagata, K., Örlü, R. & Schlatter, P. 2015 Effect of uniform blowing/suction in a turbulent boundary layer at moderate Reynolds number. Intl J. Heat Fluid Flow 55, 132142.CrossRefGoogle Scholar
Kamphuis, J.W. 1974 Determination of sand roughness for fixed beds. J. Hydraul. Res. 12 (2), 193203.CrossRefGoogle Scholar
Kent, C.W., Grimmond, S. & Gatey, D. 2017 Aerodynamic roughness parameters in cities: inclusion of vegetation. J. Wind Engng Ind. Aerodyn. 169, 168176.CrossRefGoogle Scholar
King, J., Nickling, W.G. & Gillies, J.A. 2006 Aeolian shear stress ratio measurements within mesquite-dominated landscapes of the Chihuahuan Desert, New Mexico, USA. Geomorphology 82 (3–4), 229244.CrossRefGoogle Scholar
Lancaster, N. & Baas, A. 1998 Influence of vegetation cover on sand transport by wind: field studies at Owens Lake, California. Earth Surf. Process. Landf. 23 (1), 6982.3.0.CO;2-G>CrossRefGoogle Scholar
Lapôtre, M., et al. 2016 Large wind ripples on Mars: a record of atmospheric evolution. Science 353 (6294), 5558.CrossRefGoogle Scholar
Lapôtre, M.G.A., Ewing, R.C., Weitz, C.M., Lewis, K.W., Lamb, M.P., Ehlmann, B.L. & Rubin, D.M. 2018 Morphologic diversity of martian ripples: implications for large-ripple formation. Geophys. Res. Lett. 45 (19), 10229.CrossRefGoogle Scholar
Lee, M. & Moser, R.D. 2015 Direct numerical simulation of turbulent channel flow up to $Re_{\tau } \approx 5200$. J. Fluid Mech. 774, 395415.CrossRefGoogle Scholar
Maa, C. & Schumann, U. 1996 Direct numerical simulation of separated turbulent flow over a wavy boundary. Flow Simulation with High-Performance Computers II: DFG Priority Research Programme Results 1993–1995, pp. 227–241. Vieweg+Teubner.CrossRefGoogle Scholar
Maat, N., Kraan, C. & Oost, W.A. 1991 The roughness of wind waves. Boundary-Layer Meteorol. 54 (1), 89103.CrossRefGoogle Scholar
Marticorena, B. & Bergametti, G. 1995 Modeling the atmospheric dust cycle: 1. Design of a soil-derived dust emission scheme. J. Geophys. Res. Atmos. 100 (D8), 1641516430.CrossRefGoogle Scholar
Narteau, C., Zhang, D., Rozier, O. & Claudin, P. 2009 Setting the length and time scales of a cellular automaton dune model from the analysis of superimposed bed forms. J. Geophys. Res. Earth Surf. 114 (F3), F03006.CrossRefGoogle Scholar
Nield, J.M., et al. 2013 Estimating aerodynamic roughness over complex surface terrain. J. Geophys. Res. Atmos. 118 (23), 12948.CrossRefGoogle Scholar
Nikuradse, J. 1933 Laws of flow in rough pipes. NACA Tech. Mem. 1292.Google Scholar
Owen, P.R. 1964 Saltation of uniform grains in air. J. Fluid Mech. 20 (2), 225242.CrossRefGoogle Scholar
Park, J. & Choi, H. 1999 Effects of uniform blowing or suction from a spanwise slot on a turbulent boundary layer flow. Phys. Fluids 11 (10), 30953105.CrossRefGoogle Scholar
Paul-Limoges, E., Christen, A., Coops, N.C., Black, T.A. & Trofymow, J.A. 2013 Estimation of aerodynamic roughness of a harvested Douglas-fir forest using airborne LiDAR. Remote Sens. Environ. 136, 225233.CrossRefGoogle Scholar
Perrard, S., Lozano-Durán, A., Rabaud, M., Benzaquen, M. & Moisy, F. 2019 Turbulent windprint on a liquid surface. J. Fluid Mech. 873, 10201054.CrossRefGoogle Scholar
Pope, S.B. 2000 Turbulent Flows. Cambridge University Press.CrossRefGoogle Scholar
Prandtl, L. 1925 Bericht über untersuchungen zur ausgebildeten turbulenz. Z. Angew. Math. Mech. 5 (2), 136139.CrossRefGoogle Scholar
Prigent, C., Tegen, I., Aires, F., Marticorena, B. & Zribi, M. 2005 Estimation of the aerodynamic roughness length in arid and semi-arid regions over the globe with the ERS scatterometer. J. Geophys. Res. Atmos. 110 (D9), D09205.CrossRefGoogle Scholar
Raupach, M.R. 1991 Saltation layers, vegetation canopies and roughness lengths. In Aeolian Grain Transport 1, pp. 83–96. Springer.CrossRefGoogle Scholar
Raupach, M.R. 1992 Drag and drag partition on rough surfaces. Boundary-Layer Meteorol. 60 (4), 375395.CrossRefGoogle Scholar
Raupach, M.R., Antonia, R.A. & Rajagopalan, S. 1991 a Rough-wall turbulent boundary layers. Appl. Mech. Rev. 44 (1), 125.CrossRefGoogle Scholar
Raupach, M.R., Antonia, R.A. & Rajagopalan, S. 1991 b Rough-wall turbulent boundary layers. Appl. Mech. Rev. 44 (1), 125.CrossRefGoogle Scholar
Raupach, M.R., Gillette, D.A. & Leys, J.F. 1993 The effect of roughness elements on wind erosion threshold. J. Geophys. Res. Atmos. 98 (D2), 30233029.CrossRefGoogle Scholar
Richards, K.J. 1980 The formation of ripples and dunes on an erodible bed. J. Fluid Mech. 99 (3), 597618.CrossRefGoogle Scholar
Rubanenko, L., Lapôtre, M.G.A., Ewing, R.C., Fenton, L.K. & Gunn, A. 2022 A distinct ripple-formation regime on Mars revealed by the morphometrics of barchan dunes. Nat. Commun. 13 (1), 7156.CrossRefGoogle ScholarPubMed
Sadique, J., Yang, X.I.A., Meneveau, C. & Mittal, R. 2017 Aerodynamic properties of rough surfaces with high aspect-ratio roughness elements: effect of aspect ratio and arrangements. Boundary-Layer Meteorol. 163 (2), 203224.CrossRefGoogle Scholar
Schlichting, H. 1937 Experimental investigation of the problem of surface roughness. NACA Tech. Mem. 823.Google Scholar
Schlichting, H. & Gersten, K. 2000 Boundary Layer Theory, 8th edn. Springer.CrossRefGoogle Scholar
Schmid, H.P. & Bünzli, B. 1995 The influence of surface texture on the effective roughness length. Q. J. R. Meteorol. Soc. 121 (521), 121.CrossRefGoogle Scholar
Schultz, M.P. & Flack, K.A. 2009 Turbulent boundary layers on a systematically varied rough wall. Phys. Fluids 21 (1), 015104.CrossRefGoogle Scholar
Sherman, D.J. & Farrell, E.J. 2008 Aerodynamic roughness lengths over movable beds: comparison of wind tunnel and field data. J. Geophys. Res. Earth Surf. 113 (F2), F02S08.CrossRefGoogle Scholar
Smeets, C.J.P.P. & Van den Broeke, M.R. 2008 Temporal and spatial variations of the aerodynamic roughness length in the ablation zone of the greenland ice sheet. Boundary-Layer Meteorol. 128 (3), 315338.CrossRefGoogle Scholar
Sykes, R.I. 1980 An asymptotic theory of incompressible turbulent boundary layer flow over a small hump. J. Fluid Mech. 101 (3), 647670.CrossRefGoogle Scholar
Taylor, P.A., Gent, P.R. & Keen, J.M. 1976 Some numerical solutions for turbulent boundary-layer flow above fixed, rough, wavy surfaces. Geophys. J. Intl 44 (1), 177201.CrossRefGoogle Scholar
Taylor, P.A., Sykes, R.I. & Mason, P.J. 1989 On the parameterization of drag over small-scale topography in neutrally-stratified boundary-layer flow. Boundary-Layer Meteorol. 48 (4), 409422.CrossRefGoogle Scholar
Tsai, J.L., Tsuang, B.J., Lu, P.S., Chang, K.H., Yao, M.H. & Shen, Y. 2010 Measurements of aerodynamic roughness, bowen ratio, and atmospheric surface layer height by eddy covariance and tethersonde systems simultaneously over a heterogeneous rice paddy. J. Hydrometeorol. 11 (2), 452466.CrossRefGoogle Scholar
Tsuang, B.J., Tsai, J.L., Lin, M.D. & Chen, C.L. 2003 Determining aerodynamic roughness using tethersonde and heat flux measurements in an urban area over a complex terrain. Atmos. Environ. 37 (14), 19932003.CrossRefGoogle Scholar
Tuckerman, L.S., Chantry, M. & Barkley, D. 2020 Patterns in wall-bounded shear flows. Annu. Rev. Fluid Mech. 52, 343367.CrossRefGoogle Scholar
Valance, A., Rasmussen, K.R., El Moctar, A.O. & Dupont, P. 2015 The physics of aeolian sand transport. C. R. Phys. 16 (1), 105117.CrossRefGoogle Scholar
Van Driest, E.R. 1956 On turbulent flow near a wall. J. Aeronaut. Sci. 23 (11), 10071011.CrossRefGoogle Scholar
Van Rijn, L.C. 1982 Equivalent roughness of alluvial bed. J. Hydraul. Div. 108 (10), 12151218.CrossRefGoogle Scholar
Van Rijn, L.C. 1984 Sediment transport, part III: bed forms and alluvial roughness. J. Hydraul. Engng 110 (12), 17331754.CrossRefGoogle Scholar
Venditti, J.G., Church, M. & Bennett, S.J. 2005 Morphodynamics of small-scale superimposed sand waves over migrating dune bed forms. Water Resour. Res. 41 (10), W10423.CrossRefGoogle Scholar
Wei, T. & Willmarth, W.W. 1989 Reynolds-number effects on the structure of a turbulent channel flow. J. Fluid Mech. 204, 5795.CrossRefGoogle Scholar
Wiberg, P.L. & Nelson, J.M. 1992 Unidirectional flow over asymmetric and symmetric ripples. J. Geophys. Res. Oceans 97 (C8), 1274512761.CrossRefGoogle Scholar
Wolfe, S.A. & Nickling, W.G. 1993 The protective role of sparse vegetation in wind erosion. Prog. Phys. Geogr. 17 (1), 5068.CrossRefGoogle Scholar
Xue, X., Wang, T., Sun, Q. & Zhang, W. 2002 Field and wind-tunnel studies of aerodynamic roughness length. Boundary-Layer Meteorol. 104 (1), 151163.Google Scholar
Zanke, U., Roland, A. & Wurpts, A. 2022 Roughness effects of subaquaeous ripples and dunes. Water 14 (13), 2024.CrossRefGoogle Scholar
Zilker, D.P., Cook, G.W. & Hanratty, T.J. 1977 Influence of the amplitude of a solid wavy wall on a turbulent flow. Part 1. Non-separated flows. J. Fluid Mech. 82 (1), 2951.CrossRefGoogle Scholar
Zilker, D.P. & Hanratty, T.J. 1979 Influence of the amplitude of a solid wavy wall on a turbulent flow. Part 2. Separated flows. J. Fluid Mech. 90 (2), 257271.CrossRefGoogle Scholar