Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-12T08:15:24.278Z Has data issue: false hasContentIssue false

Hydrodynamic interactions for the measurement of thin film elastic properties

Published online by Cambridge University Press:  17 March 2011

S. LEROY
Affiliation:
Laboratoire PMCN, Université de Lyon, CNRS UMR 5586, F-69622 Villeurbanne, France
E. CHARLAIX*
Affiliation:
Laboratoire PMCN, Université de Lyon, CNRS UMR 5586, F-69622 Villeurbanne, France
*
Email address for correspondence: elisabeth.charlaix@univ-lyon1.fr

Abstract

We study the elasto-hydrodynamic (EHD) interaction of a sphere with a flat elastic surface in the prospect of measuring the elastic moduli of soft supported thin films, with non-contact dynamic surface forces or atomic force microscopy measurements. When the sphere is oscillated at a very small amplitude close to the surface, the linear force response undergoes a dynamic transition from a viscous-dominated behaviour at large distance to an elastic-dominated behaviour at short distance. In the limit of very thin or very thick supported layers, we show that the force response obeys simple scaling laws which allow to unambiguously determine the absolute elastic modulus of the layer. In the general case, we establish the very rich phase diagram of the EHD interaction and discuss its application for optimizing experimental parameters.

Type
Papers
Copyright
Copyright © Cambridge University Press 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Abramowitz, M. & Stegun, I. A. 1964 Handbook of Mathematical Functions. US Government Printing Office.Google Scholar
Aime, J. P., Boisgard, R., Nony, L. & Couturier, G. 2001 Influence of noncontact dissipation in the tapping mode: attempt to extract quantitative information on the surface properties with the local force probe method. J. Chem. Phys. 114 (4945).CrossRefGoogle Scholar
Barnocky, G. & Davis, R. H. 1988 Elastohydrodynamic collision and rebound of spheres: experimental verification. Phys. Fluids 31 (6), 1324.CrossRefGoogle Scholar
Barnocky, G. & Davis, R. H. 1989 The influence of pressure-dependent density and viscosity of the elastohydrodynamic collision and rebound of two spheres. J. Fluid Mech. 209, 501519.CrossRefGoogle Scholar
Barthel, E. 2007 Adhesive contact of a compliant sphere to an elastic coated substrate: the thin film limit. J. Adhes. 83, 729.CrossRefGoogle Scholar
Barthel, E. & Perriot, A. 2007 Adhesive contact to a coated elastic substrate. J. Phys. D: Appl. Phys. 40, 10591067.CrossRefGoogle Scholar
Barthel, E., Perriot, A., Chateauminois, A. & Frétigny, C. 2006 Elastic contact to nearly incompressible coatings – stiffness enhancement and elastic pile-up. Phil. Mag. 86, 535.CrossRefGoogle Scholar
Basire, C. & Fretigny, C. 1999 Determination of viscoelastic moduli at a submicrometric scale. Eur. Phys. J. Appl. Phys. 6, 323329.CrossRefGoogle Scholar
Bodiguel, H. & Fretigny, C. 2006 Reduced viscosity in thin polymer films. Phys. Rev. Lett. 97, 266105.CrossRefGoogle ScholarPubMed
Chan, D. C. Y. & Horn, R. G. 1985 The drainage of thin films between solid surfaces. J. Chem. Phys. 83, 5311.CrossRefGoogle Scholar
Cottin-Bizonne, C., Steinberger, A., Cross, B., Raccurt, O. & Charlaix, E. 2008 Nanohydrodynamics: the intrinsic boundary flow condition on smooth surfaces. Langmuir 24, 11651172.CrossRefGoogle ScholarPubMed
Dammer, S. M. & Lohse, D. 2006 Gas enrichment at liquid–wall interfaces. Phys. Rev. Lett. 96, 206101.CrossRefGoogle ScholarPubMed
Davis, R. H., Serayssol, J.-M. & Hinch, E. J. 1986 The elastohydrodynamic collision of two spheres. J. Fluid Mech. 163, 479497.CrossRefGoogle Scholar
Dubourg, F., Aime, J. P., Marsaudon, S., Couturier, G. & Boisgard, R. 2003 Probing the relationship between the scales of space and time in an entangled polymer network with an oscillating nanotip. J. Phys. Condens. Matter 15 (36), 61676177.CrossRefGoogle Scholar
Ducker, W. A. 2009 Contact angle and stability of interfacial nanobubbles. Langmuir 25 (16), 89078910.CrossRefGoogle ScholarPubMed
Gacoin, E., Fretigny, C., Chateauminois, A., Perriot, A. & Barthel, E. 2006 Measurement of the mechanical properties of thin films mechanically confined within contacts. Tribol. Lett. 21 (3), 245252.CrossRefGoogle Scholar
Georges, J.-M., Milliot, S., Loubet, J. L. & Tonck, A. 1993 Drainage of thin liquid films between relatively smooth surfaces. J. Chem. Phys. 98, 7345.CrossRefGoogle Scholar
Hocking, L. M. 1973 The effect of slip on the motion of a sphere close to a wall and of two adjacent spheres. J. Engng Maths 7, 207.CrossRefGoogle Scholar
Honig, C. D. F. & Ducker, W. A. 2007 No-slip hydrodynamic boundary condition for hydrophilic particles. Phys. Rev. Lett. 98 (2), 028305.CrossRefGoogle ScholarPubMed
Huang, D. M., Sendner, C., Horinek, D., Netz, R. R. & Bocquet, L. 2008 Water slippage versus contact angle: a quasi-universal relationship. Phys. Rev. Lett. 101, 226101.CrossRefGoogle Scholar
Johannsmann, 2002 The glass transition and contact mechanical experiments on polymer surfaces. Eur. Phys. J. E 8, 257259.CrossRefGoogle ScholarPubMed
Johnson, K. L., Kendall, K. & Roberts, A. D. 1971 Surface energy and the contact of elastic solids. Proc. R. Soc. Lond. A 324, 301313.Google Scholar
Lauga, E. & Brenner, M. P. 2004 Dynamic mechanisms for apparent slip on hydrophobic surfaces. Phys. Rev. E 70, 026311.CrossRefGoogle ScholarPubMed
Leopoldes, J. & Jia, X. 2009 Probing viscoelastic properties of a thin polymer film sheared between a beads layer and an ultrasonic resonator. Eur. Phys. Lett. 88, 34001.CrossRefGoogle Scholar
Li, J. & Chou, T.-W. 1997 Elastic field of a thin-film/substrate system under an axisymmetric loading. Intl J. Solids Struct. 34 (35–36), 44634478.CrossRefGoogle Scholar
Long, D. & Lequeux, F. 2001 Heterogeneous dynamics at the glass transition in van der Waals liquids, in the bulk and in thin films. Eur. Phys. J. E 4, 371387.CrossRefGoogle Scholar
Mary, P., Chateauminois, A. & Fretigny, C. 2006 Deformation of elastic coatings in adhesive contacts with spherical probes. J. Phys. D: Appl. Phys. 39, 36653673.CrossRefGoogle Scholar
McGuiggan, 2004 Measurement of the loss tangent of a thin polymeric film using the atomic force microscope. J. Mater. Res. 19 (1), 387395.CrossRefGoogle Scholar
McGuiggan, P. M., Wallace, J. T., Smith, D. T., Sridhar, I., Zheng, Z. W. & Johnson, K. L. 2007 Contact mechanics of layered elastic materials: experiment and theory. J. Phys. D: Appl. Phys. 40, 59845994.CrossRefGoogle Scholar
Nogi, T. & Kato, T. 1997 Influence of a hard surface layer on the limit of elastic contact. – Part 1. Analysis using a real surface model. ASME J. Tribol. 119 (3), 493500.CrossRefGoogle Scholar
O'Connell, P. A. & McKenna, G. B. 2005 Rheological measurements of the thermoviscoelastic response of ultrathin polymer films. Science 307, 5716.CrossRefGoogle ScholarPubMed
Perriot, A. & Barthel, E. 2004 Contact to a coated half-space: effective elastic modulus and real penetration. J. Mater. Res. 19, 600.CrossRefGoogle Scholar
Press, W. H., Flannery, B. P., Teukolsky, S. A. & Vetterling, W. T. 1986 Numerical Recipes: The Art of Scientific Computing. Cambridge University Press.Google Scholar
Raviv, U., Perkin, S., Laurat, P. & Klein, J. 2004 Fluidity of water confined to subnanometer films. Langmuir 20, 53225332.CrossRefGoogle ScholarPubMed
Restagno, F., Crassous, J., Charlaix, E., Cottin-Bizonne, C. & Monchanin, M. 2002 A highly sensitive dynamic surface force apparatus for nanorheology. Rev. Sci. Instrum. 73, 22922297.CrossRefGoogle Scholar
Rossky, P. J. 2010 Exploring nanoscale hydrophobic hydration. Faraday Discuss. 146, 1318.CrossRefGoogle ScholarPubMed
Shull, K. R. 2002 Contact mechanics and the adhesion of soft solids. Math. Sci. Engng Res. 36 (1), 145.CrossRefGoogle Scholar
Sridhar, I. & Johnson, K. L. 2004 A detailed analysis of adhesion mechanics between a compliant elastic coating and a spherical probe. J. Phys. D: Appl. Phys. 37, 28862895.CrossRefGoogle Scholar
Stafford, C. M., Harrison, C., Beers, K. L., Karim, A., Amis, E. J., Vanlandingham, M. R., Kim, H.-C., Volksen, W., Miller, R. D. & Simonyi, E. E. 2004 A buckling-based metrology for measuring the elastic moduli of polymeric thin films. Nature Mater. 3, 545.CrossRefGoogle ScholarPubMed
Steinberger, A., Cottin-Bizonne, C., Kleimann, P. & Charlaix, E. 2008 Nanoscale flow on a bubble mattress: effect of surface elasticity. Phys. Rev. Lett. 100, 134501.CrossRefGoogle ScholarPubMed
Tardivat, C., Hervet, H. & Leger, L. 2001 Adhesion evaluation for a stratified system in JKR geometry. J. Adhes. Sci. Technol. 15 (9), 10551078.CrossRefGoogle Scholar
Vinogradova, O. I. & Feuillebois, F. 2000 Elastohydrodynamic collision of two spheres allowing slip on their surfaces. J. Colloid Interface Sci. 221, 121.CrossRefGoogle ScholarPubMed
Yang, S., Dammer, S. M., Bremond, N., Zandvliet, H. J. W., Kooij, E. S. & Lohse, D. 2007 Characterization of nanobubbles on hydrophobic surfaces in water. Langmuir 23, 70727077.CrossRefGoogle ScholarPubMed
Supplementary material: PDF

Leroy and Charlaix supplementary material

Supplementary Table

Download Leroy and Charlaix supplementary material(PDF)
PDF 26.4 KB