Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-26T00:56:11.038Z Has data issue: false hasContentIssue false

Heat transport and the large-scale circulation in rotating turbulent Rayleigh–Bénard convection

Published online by Cambridge University Press:  26 October 2010

JIN-QIANG ZHONG
Affiliation:
Department of Physics, University of California, Santa Barbara, CA 93106, USA
GUENTER AHLERS*
Affiliation:
Department of Physics, University of California, Santa Barbara, CA 93106, USA
*
Email address for correspondence: guenter@physics.ucsb.edu

Abstract

Measurements of the Nusselt number Nu and of properties of the large-scale circulation (LSC) for turbulent Rayleigh–Bénard convection are presented in the presence of rotation about a vertical axis at angular speeds 0 ≤ Ω ≲ 2 rad s−1. The sample chamber was cylindrical with a height equal to the diameter, and the fluid contained in it was water. The LSC was studied by measuring sidewall temperatures as a function of azimuthal position. The measurements covered the Rayleigh-number range 3 × 108Ra ≲ 2 × 1010, the Prandtl-number range 3.0 ≲ Pr ≲ 6.4 and the Rossby-number range 0 ≤ (1/Ro ∝ Ω) ≲ 20. At modest 1/Ro, we found an enhancement of Nu due to Ekman-vortex pumping by as much as 20%. As 1/Ro increased from zero, this enhancement set in discontinuously at and grew above 1/Roc. The value of 1/Roc varied from about 0.48 at Pr = 3 to about 0.35 at Pr = 6.2. At sufficiently large 1/Ro (large rotation rates), Nu decreased again, due to the Taylor–Proudman (TP) effect, and reached values well below its value without rotation. The maximum enhancement increased with increasing Pr and decreasing Ra and, we believe, was determined by a competition between the Ekman enhancement and the TP depression. The temperature signature along the sidewall of the LSC was detectable by our method up to 1/Ro ≃ 1. The frequency of cessations α of the LSC grew dramatically with increasing 1/Ro, from about 10−5 s−1 at 1/Ro = 0 to about 2 × 10−4 s−1 at 1/Ro = 0.25. A discontinuous further increase of α, by about a factor of 2.5, occurred at 1/Roc. With increasing 1/Ro, the time-averaged and azimuthally averaged vertical thermal gradient along the sidewall first decreased and then increased again, with a minimum somewhat below 1/Roc. The Reynolds number of the LSC, determined from oscillations of the time correlation functions of the sidewall temperatures, was constant within our resolution for 1/Ro ≲ 0.3 and then decreased with increasing 1/Ro. The retrograde rotation rate of the LSC circulation plane exhibited complex behaviour as a function of 1/Ro even at small rotation rates corresponding to 1/Ro < 1/Roc.

Type
Papers
Copyright
Copyright © Cambridge University Press 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Ahlers, G. 2009 Turbulent convection. Physics 2, 74.CrossRefGoogle Scholar
Ahlers, G., Brown, E., Fontenele Araujo, F., Funfschilling, D., Grossmann, S. & Lohse, D. 2006 a Non-Oberbeck–Boussinesq effects in strongly turbulent Rayleigh–Bénard convection. J. Fluid Mech. 569, 409445.CrossRefGoogle Scholar
Ahlers, G., Brown, E. & Nikolaenko, A. 2006 b The search for slow transients, and the effect of imperfect vertical alignment, in turbulent Rayleigh–Bénard convection. J. Fluid Mech. 557, 347367.CrossRefGoogle Scholar
Ahlers, G., Grossmann, S. & Lohse, D. 2002 Hochpräzision im Kochtopf: neues zur turbulenten Konvektion. Phys. J. 1 (2), 3137.Google Scholar
Ahlers, G., Grossmann, S. & Lohse, D. 2009 Heat transfer and large scale dynamics in turbulent Rayleigh–Bénard convection. Rev. Mod. Phys. 81, 503538.CrossRefGoogle Scholar
Ahlers, G. & Xu, X. 2001 Prandtl-number dependence of heat transport in turbulent Rayleigh–Bénard convection. Phys. Rev. Lett. 86, 33203323.CrossRefGoogle ScholarPubMed
Bajaj, K., Ahlers, G. & Pesch, W. 2002 Rayleigh–Bénard convection with rotation at small Prandtl numbers. Phys. Rev. E 65, 056309.CrossRefGoogle ScholarPubMed
Bajaj, K. M. S., Liu, J., Naberhuis, B. & Ahlers, G. 1998 Square patterns in Rayleigh–Bénard convection with rotation about a vertical axis. Phys. Rev. Lett. 81, 806809.CrossRefGoogle Scholar
Becker, N. & Ahlers, G. 2006 a The domain chaos puzzle and the calculation of the structure factor and its half-width. Phys. Rev. E 73, 046209.CrossRefGoogle ScholarPubMed
Becker, N. & Ahlers, G. 2006 b Local wave director analysis of domain chaos in Rayleigh–Bénard convection. J. Stat. Mech. P12002, 139.Google Scholar
Becker, N., Scheel, J., Cross, M. & Ahlers, G. 2006 Effect of the centrifugal force on domain chaos in Rayleigh–Bénard convection. Phys. Rev. E 73, 066309.CrossRefGoogle ScholarPubMed
Bodenschatz, E., Cannell, D. S., de Bruyn, J., Ecke, R., Hu, Y., Lerman, K. & Ahlers, G. 1992 Experiments on three systems with non-variational aspects. Physica D 61, 7793.CrossRefGoogle Scholar
Boubnov, B. M. & Golitsyn, G. S. 1986 Experimental study of convective structures in rotating fluids. J. Fluid Mech. 167, 503531.CrossRefGoogle Scholar
Boubnov, B. M. & Golitsyn, G. S. 1990 Temperature and velocity field regimes of convective motions in a rotating plane fluid layer. J. Fluid Mech. 219, 215239.CrossRefGoogle Scholar
Brown, E. & Ahlers, G. 2006 a Effect of the Earth's Coriolis force on turbulent Rayleigh–Bénard convection in the laboratory. Phys. Fluids 18, 125108.CrossRefGoogle Scholar
Brown, E. & Ahlers, G. 2006 b Rotations and cessations of the large-scale circulation in turbulent Rayleigh–Bénard convection. J. Fluid Mech. 568, 351386.CrossRefGoogle Scholar
Brown, E. & Ahlers, G. 2007 a Large-scale circulation model of turbulent Rayleigh–Bénard convection. Phys. Rev. Lett. 98, 134501.CrossRefGoogle ScholarPubMed
Brown, E. & Ahlers, G. 2007 b Temperature gradients and search for non-Boussinesq effects in the interior of turbulent Rayleigh–Bénard convection. Europhys. Lett. 80, 14001.CrossRefGoogle Scholar
Brown, E. & Ahlers, G. 2008 a Azimuthal asymmetries of the large-scale circulation in turbulent Rayleigh–Bénard convection. Phys. Fluids 20, 105105.CrossRefGoogle Scholar
Brown, E. & Ahlers, G. 2008 b A model of diffusion in a potential well for the dynamics of the large-scale circulation in turbulent Rayleigh–Bénard convection. Phys. Fluids 20, 075101.CrossRefGoogle Scholar
Brown, E. & Ahlers, G. 2009 The origin of oscillations of the large-scale circulation of turbulent Rayleigh–Bénard convection. J. Fluid Mech. 638, 383400.CrossRefGoogle Scholar
Brown, E., Funfschilling, D. & Ahlers, G. 2007 Anomalous Reynolds-number scaling in turbulent Rayleigh–Bénard convection. J. Stat. Mech. 2007, P10005.CrossRefGoogle Scholar
Brown, E., Nikolaenko, A. & Ahlers, G. 2005 a Reorientation of the large-scale circulation in turbulent Rayleigh–Bénard convection. Phys. Rev. Lett. 95, 084503.CrossRefGoogle ScholarPubMed
Brown, E., Nikolaenko, A., Funfschilling, D. & Ahlers, G. 2005 b Heat transport by turbulent Rayleigh–Bénard convection: effect of finite top- and bottom-plate conductivity. Phys. Fluids 17, 075108.CrossRefGoogle Scholar
Buell, J. C. & Catton, I. 1983 Effect of rotation on the stability of a bounded cylindrical layer of fluid heated from below. Phys. Fluids 26, 892896.CrossRefGoogle Scholar
Busse, F. H. 1994 Convection driven zonal flows and vortices in the major planets. Chaos 4, 123134.CrossRefGoogle ScholarPubMed
Busse, F. H. & Heikes, K. E. 1980 Convection in a rotating layer: a simple case of turbulence. Science 208, 173175.CrossRefGoogle Scholar
Chandrasekhar, S. 1981 Hydrodynamic and Hydromagnetic Stability. Dover.Google Scholar
Choi, W., Prasad, D., Camassa, R. & Ecke, R. 2004 Traveling waves in rotating Rayleigh–Bénard convection. Phys. Rev. E 69, 056301.CrossRefGoogle ScholarPubMed
Ciliberto, S., Cioni, S. & Laroche, C. 1996 Large-scale flow properties of turbulent thermal convection. Phys. Rev. E 54, R5901R5904.CrossRefGoogle ScholarPubMed
Cioni, S., Ciliberto, S. & Sommeria, J. 1997 Strongly turbulent Rayleigh–Bénard convection in mercury: comparison with results at moderate Prandtl number. J. Fluid Mech. 335, 111140.CrossRefGoogle Scholar
Clever, R. M. & Busse, F. H. 1979 Nonlinear properties of convection rolls in a horizontal layer rotating about a vertical axis. J. Fluid Mech. 94, 609627.CrossRefGoogle Scholar
Ecke, R. E., Zhong, F. & Knobloch, E. 1992 Hopf bifurcation with broken reflection symmetry in rotating Rayleigh–Bénard convection. Europhys. Lett. 19, 177182.CrossRefGoogle Scholar
Fantz, M., Friedrich, R., Bestehorn, M. & Haken, H. 1992 Pattern formation in rotating Bénard convection. Physica D 61, 147154.CrossRefGoogle Scholar
Fernando, H. J. S., Chen, R. & Boyer, D. L. 1991 Effects of rotation on convective turbulence. J. Fluid Mech. 228, 513547.Google Scholar
Funfschilling, D. & Ahlers, G. 2004 Plume motion and large scale circulation in a cylindrical Rayleigh–Bénard cell. Phys. Rev. Lett. 92, 194502.CrossRefGoogle Scholar
Funfschilling, D., Brown, E. & Ahlers, G. 2008 Torsional oscillations of the large-scale circulation in turbulent Rayleigh–Bénard convection. J. Fluid Mech. 607, 119139.CrossRefGoogle Scholar
Funfschilling, D., Brown, E., Nikolaenko, A. & Ahlers, G. 2005 Heat transport by turbulent Rayleigh–Bénard convection in cylindrical cells with aspect ratio one and larger. J. Fluid Mech. 536, 145154.CrossRefGoogle Scholar
Gascard, J., Watson, A., Messias, M., Olsson, K., Johannessen, T. & Simonsen, K. 2002 Long-lived vortices as a mode of deep ventilation in the Greenland Sea. Nature (London) 416, 525527.CrossRefGoogle ScholarPubMed
Glatzmaier, G., Coe, R., Hongre, L. & Roberts, P. 1999 The role of the Earth's mantle in controlling the frequency of geomagnetic reversals. Nature (London) 401, 885890.CrossRefGoogle Scholar
Grossmann, S. & Lohse, D. 2000 Scaling in thermal convection: a unifying view. J. Fluid. Mech. 407, 2756.CrossRefGoogle Scholar
Grossmann, S. & Lohse, D. 2001 Thermal convection for large Prandtl number. Phys. Rev. Lett. 86, 33163319.CrossRefGoogle Scholar
Hart, J. E. 1995 Nonlinear Ekman suction and agesotrophic effects in rapidly rotating flows. Geophys. Astrophys. Fluid Dyn. 79, 201222.CrossRefGoogle Scholar
Hart, J. E. 2000 A note on nonlinear corrections to the Ekman layer pumping velocity. Phys. Fluids 12, 131135.CrossRefGoogle Scholar
Hart, J. E., Kittelman, S. & Ohlsen, D. R. 2002 Mean flow precession and temperature probability density functions in turbulent rotating convection. Phys. Fluids 14, 955962.CrossRefGoogle Scholar
Hart, J. E. & Olsen, D. R. 1999 On the thermal offset in turbulent rotating convection. Phys. Fluids 11, 21012107.CrossRefGoogle Scholar
Heikes, K. E. & Busse, F. H. 1980 Weakly nonlinear turbulence in a rotating convection layer. Ann. N.Y. Acad. Sci. 357, 2836.CrossRefGoogle Scholar
Heslot, F., Castaing, B. & Libchaber, A. 1987 Transition to turbulence in helium gas. Phys. Rev. A 36, 58705873.CrossRefGoogle ScholarPubMed
Hu, Y., Ecke, R. & Ahlers, G. 1995 Time and length scales in rotating Rayleigh–Bénard convection. Phys. Rev. Lett. 74, 50405043.CrossRefGoogle ScholarPubMed
Hu, Y., Ecke, R. E. & Ahlers, G. 1997 Convection under rotation for Prandtl numbers near one: linear stability, wavenumber selection, and pattern dynamics. Phys. Rev. E 55, 69286949.CrossRefGoogle Scholar
Hu, Y., Pesch, W., Ahlers, G. & Ecke, R. E. 1998 Convection under rotation for Prandtl numbers near one: Küppers–Lortz instability. Phys. Rev. E 58, 58215833.CrossRefGoogle Scholar
Jones, C. 2000 Convection-driven geodynamo models. Phil. Trans. R. Soc. Lond. A 358, 873897.CrossRefGoogle Scholar
Julien, K., Legg, S., McWilliams, J. & Werne, J. 1996 a Hard turbulence in rotating Rayleigh–Bénard convection. Phys. Rev. E 53, R5557R5560.CrossRefGoogle ScholarPubMed
Julien, K., Legg, S., McWilliams, J. & Werne, J. 1996 b Rapidly rotating turbulent Rayleigh–Bénard convection. J. Fluid Mech. 322, 243273.CrossRefGoogle Scholar
Julien, K., Legg, S., McWilliams, J. & Werne, J. 1999 Plumes in rotating convection. Part 1. Ensemble statistics and dynamical balances. J. Fluid Mech. 391, 151187.CrossRefGoogle Scholar
Kadanoff, L. P. 2001 Turbulent heat flow: structures and scaling. Phys. Today 54 (8), 3439.CrossRefGoogle Scholar
King, E., Stellmach, S., Noir, J., Hansen, U. & Aurnou, J. 2009 Boundary layer control of rotating convection systems. Nature 457, 301304.CrossRefGoogle ScholarPubMed
Kunnen, R. P. J., Clercx, H. J. H. & Geurts, B. J. 2006 Heat flux intensification by vortical flow localization in rotating convection. Phys. Rev. E 74, 056306.CrossRefGoogle ScholarPubMed
Kunnen, R., Clercx, H. & Geurts, B. 2008 a Enhanced vertical inhomogeneity in turbulent rotating convection. Phys. Rev. Lett. 101, 174501.CrossRefGoogle ScholarPubMed
Kunnen, R. P. J., Clercx, H. J. H. & Geurts, B. J. 2008 b Breakdown of large-scale circulation in turbulent rotating convection. Europhys. Lett. 84, 24001.CrossRefGoogle Scholar
Kunnen, R., Geurts, B. & Clercx, H. 2010 Experimental and numerical investigation of turbulent convection in a rotating cylinder. J. Fluid Mech. 642, 445476.CrossRefGoogle Scholar
Küppers, G. 1970 The stability of steady finite amplitude convection in a rotating fluid layer. Phys. Lett. 32A, 78.CrossRefGoogle Scholar
Küppers, G. & Lortz, D. 1969 Transition from laminar convection to thermal turbulence in a rotating fluid layer. J. Fluid Mech. 35, 609620.CrossRefGoogle Scholar
Liu, Y. & Ecke, R. 1997 a Eckhaus–Benjamin–Feir instability in rotating convection. Phys. Rev. Lett. 78, 43914394.CrossRefGoogle Scholar
Liu, Y. & Ecke, R. 1997 b Heat transport scaling in turbulent Rayleigh–Bénard convection: effects of rotation and Prandtl number. Phys. Rev. Lett. 79, 22572260.CrossRefGoogle Scholar
Liu, Y. & Ecke, R. 1999 Nonlinear traveling waves in rotating Rayleigh–Bénard convection: stability boundaries and phase diffusion. Phys. Rev. E 59, 40914105.CrossRefGoogle Scholar
Liu, Y. & Ecke, R. 2009 Heat transport measurements in turbulent rotating Rayleigh–Bénard convection. Phys. Rev. E 80, 036314.CrossRefGoogle ScholarPubMed
Lohse, D. & Xia, K.-Q. 2010 Small-scale properties of turbulent Rayleigh–Bénard convection. Annu. Rev. Fluid Mech. 42, 335364.CrossRefGoogle Scholar
Lucas, P., Pfotenhauer, J. & Donnelly, R. 1983 Stability and heat transfer of rotating cryogens. Part 1. Influence of rotation on the onset of convection in liquid 4He. J. Fluid Mech. 129, 251264.CrossRefGoogle Scholar
Marshall, J. & Schott, F. 1999 Open-ocean convection: observations, theory and models. Rev. Geophys. 37, 164.CrossRefGoogle Scholar
Miesch, M. S. 2000 The coupling of solar convection and rotation. Solar Phys. 192, 5989.CrossRefGoogle Scholar
Millán-Rodríguez, J., Bestehorn, M., Perez-García, C., Friedrich, R. & Neufeld, M. 1995 Defect motion in rotating fluids. Phys. Rev. Lett. 74, 530533.CrossRefGoogle ScholarPubMed
Mishra, P., De, A., Verma, M. & Eswaran, V. 2010 Dynamics of reorientations and reversals of large scale flow in Rayleigh–Bénard convection. J. Fluid Mech., in press (arXiv:1003.2102v4).CrossRefGoogle Scholar
Neufeld, M., Friedrich, R. & Haken, H. 1993 Order parameter equation and model equation for high Prandtl number Rayleigh–Bénard convection in a rotating large aspect ratio system. Z. Phys. B 92, 243256.CrossRefGoogle Scholar
Niemela, J., Babuin, S. & Sreenivasan, K. 2010 Turbulent rotating convection at high Rayleigh and Taylor numbers. J. Fluid Mech. 649, 509522.CrossRefGoogle Scholar
Niemela, J. & Donnelly, R. 1986 Direct transition to turbulence in rotating Bénard convection. Phys. Rev. Lett. 57, 25242527.CrossRefGoogle ScholarPubMed
Nikolaenko, A., Brown, E., Funfschilling, D. & Ahlers, G. 2005 Heat transport by turbulent Rayleigh–Bénard convection in cylindrical cells with aspect ratio one and less. J. Fluid Mech. 523, 251260.CrossRefGoogle Scholar
Ning, L. & Ecke, R. 1993 a Küppers–Lortz transition at high dimensionless rotation rates in rotating Rayleigh–Bénard convection. Phys. Rev. E 47, R2991R2994.CrossRefGoogle ScholarPubMed
Ning, L. & Ecke, R. 1993 b Rotating Rayleigh-Bénard convection: aspect-ratio dependence of the initial bifurcations. Phys. Rev. E 47, 33263333.CrossRefGoogle ScholarPubMed
Pfotenhauer, J. M., Lucas, P. G. J. & Donnelly, R. J. 1984 Stability and heat transfer of rotating cryogens. Part 2. Effects of rotation on heat-transfer properties on convection in liquid 4He. J. Fluid Mech. 145, 239252.CrossRefGoogle Scholar
Pfotenhauer, J., Niemela, J. & Donnelly, R. 1987 Stability and heat-transfer of rotating cryogens. Part 3. Effects of finite cylindrical geometry and rotation on the onset of convection. J. Fluid Mech. 175, 8596.CrossRefGoogle Scholar
Ponty, Y., Passot, T. & Sulem, P. 1997 Chaos and structures in rotating convection at finite Prandtl number. Phys. Rev. Lett. 79, 7174.CrossRefGoogle Scholar
Qiu, X. L. & Tong, P. 2002 Temperature oscillations in turbulent Rayleigh–Bénard convection. Phys. Rev. E 66, 026308.CrossRefGoogle ScholarPubMed
Roche, P. E., Castaing, B., Chabaud, B. & Hebral, B. 2002 Prandtl and Rayleigh numbers dependences in Rayleigh–Bénard convection. Europhys. Lett. 58, 693698.CrossRefGoogle Scholar
Rossby, H. T. 1969 A study of Bénard convection with and without rotation. J. Fluid Mech. 36, 309335.CrossRefGoogle Scholar
Rubio, A., Lopez, J. & Marques, F. 2010 Onset of Küppers–Lortz-like dynamics in finite rotating thermal convection. J. Fluid Mech. 644, 337357.CrossRefGoogle Scholar
Sakai, S. 1997 The horizontal scale of rotating convection in the geostrophic regime. J. Fluid Mech. 333, 8595.CrossRefGoogle Scholar
Sánchez-Álvarez, J., Serre, E., del Arco, E. C. & Busse, F. 2005 Square patterns in rotating Rayleigh–Bénard convection. Phys. Rev. E 72, 036307.CrossRefGoogle ScholarPubMed
Scheel, J., Mutyaba, P. & Kimmel, T. 2010 Patterns in rotating Rayleigh-Bénard convection at high rotation rates. J. Fluid Mech. (in press).CrossRefGoogle Scholar
Schmitz, S. & Tilgner, A. 2009 Heat transport in rotating convection without Ekman layers. Phys. Rev. E 80, 015305.CrossRefGoogle ScholarPubMed
Stevens, R., Clercx, H. & Lohse, D. 2010 a Boundary layers in rotating weakly turbulent Rayleigh–Bénard convection. Phys. Fluids 22, 085103.CrossRefGoogle Scholar
Stevens, R., Clercx, H. & Lohse, D. 2010 b Optimal Prandtl number for heat transfer enhancement in rotating turbulent Rayleigh–Bénard convection. New J. Phys. 12, 075005.CrossRefGoogle Scholar
Stevens, R., Zhong, J.-Q., Clercx, H., Ahlers, G. & Lohse, D. 2009 Transitions between turbulent states in rotating Rayleigh–Bénard convection. Phys. Rev. Lett. 103, 024503.CrossRefGoogle ScholarPubMed
Sun, C., Xi, H. D. & Xia, K. Q. 2005 Azimuthal symmetry, flow dynamics, and heat transport in turbulent thermal convection in a cylinder with an aspect ratio of 0.5. Phys. Rev. Lett. 95, 074502.CrossRefGoogle Scholar
Thompson, K., Bajaj, K. & Ahlers, G. 2002 Traveling concentric-roll patterns in Rayleigh–Bénard convection with modulated rotation. Phys. Rev. E 65, 046218.CrossRefGoogle ScholarPubMed
Tilgner, A., Belmonte, A. & Libchaber, A. 1993 Temperature and velocity profiles of turbulence convection in water. Phys. Rev. E 47, R2253–R2256.CrossRefGoogle ScholarPubMed
Tritton, D. J. 1988 Physical Fluid Dynamics. Oxford University Press.Google Scholar
Tu, Y. & Cross, M. 1992 Chaotic domain structure in rotating convection. Phys. Rev. Lett. 69, 2515.CrossRefGoogle ScholarPubMed
Veronis, G. 1966 Motions at subcritical values of the Rayleigh number in a rotating fluid. J. Fluid Mech. 24, 545554.CrossRefGoogle Scholar
Veronis, G. 1968 Large-amplitude Bénard convection in a rotating fluid. J. Fluid Mech. 31, 113139.CrossRefGoogle Scholar
Vorobieff, P. & Ecke, R. E. 1998 Vortex structure in rotating Rayleigh–Bénard convection. Physica D 123, 153160.CrossRefGoogle Scholar
Vorobieff, P. & Ecke, R. E. 2002 Turbulent rotating convection: an experimental study. J. Fluid Mech. 458, 191218.CrossRefGoogle Scholar
Xi, H. D., Zhou, Q. & Xia, K. Q. 2006 Azimuthal motion of the mean wind in turbulent thermal convestion. Phys. Rev. E 73, 056312.CrossRefGoogle Scholar
Xi, H.-D., Zhou, S.-Q., Zhou, Q., Chan, T.-S. & Xia, K.-Q. 2009 Origin of the temperature oscillation in turbulent thermal convection. Phys. Rev. Lett. 102, 044503.CrossRefGoogle ScholarPubMed
Xia, K.-Q. 2007 Two clocks for a single engine in turbulent convection. J. Stat. Mech. 2007, N11001.CrossRefGoogle Scholar
Xia, K.-Q., Lam, S. & Zhou, S. Q. 2002 Heat-flux measurement in high-Prandtl-number turbulent Rayleigh–Bénard convection. Phys. Rev. Lett. 88, 064501.CrossRefGoogle ScholarPubMed
Zhong, F., Ecke, R. & Steinberg, V. 1993 Rotating Rayleigh–Bénard convection: asymmetric modes and vortex states. J. Fluid Mech. 249, 135159.CrossRefGoogle Scholar
Zhong, J.-Q., Stevens, R., Clercx, H., Verzicco, R., Lohse, D. & Ahlers, G. 2009 Prandtl-, Rayleigh-, and Rossby-number dependence of heat transport in turbulent rotating Rayleigh–Bénard convection. Phys. Rev. Lett. 102, 044502.CrossRefGoogle ScholarPubMed
Zhou, Q., Xi, H.-D., Zhou, S.-Q., Sun, C. & Xia, K.-Q. 2009 Oscillations of the large-scale circulation in turbulent Rayleigh–Bénard convection: the sloshing mode and its relationship with the torsional mode. J. Fluid Mech. 630, 367390.CrossRefGoogle Scholar
Zhou, Q. & Xia, K.-Q. 2010 Measured instantaneous viscous boundary layer in turbulent Rayleigh–Bénard convection. Phys. Rev. Lett. 104, 104301.CrossRefGoogle ScholarPubMed
Supplementary material: PDF

Ahlers supplementary material

Tables.pdf

Download Ahlers supplementary material(PDF)
PDF 70.9 KB