Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-25T20:02:37.408Z Has data issue: false hasContentIssue false

Hampering Görtler vortices via optimal control in the framework of nonlinear boundary region equations

Published online by Cambridge University Press:  01 June 2018

Adrian Sescu*
Affiliation:
Department of Aerospace Engineering, Mississippi State University, Mississippi State, MS 39762, USA
M. Z. Afsar
Affiliation:
Mechanical and Aerospace Engineering, University of Strathclyde, 16 Richmond St, Glasgow G1 1XQ, UK
*
Email address for correspondence: sescu@ae.msstate.edu

Abstract

The control of streamwise vortices in high Reynolds number boundary layer flows often aims at reducing the vortex energy as a means of mitigating the growth of secondary instabilities, which eventually delays the transition from laminar to turbulent flow. In this paper, we aim at utilizing such an energy reduction strategy using optimal control theory to limit the growth of Görtler vortices developing in an incompressible laminar boundary layer flow over a concave wall, and excited by a row of roughness elements with spanwise separation of the same order of magnitude as the boundary layer thickness. Commensurate with control theory formalism, we transform a constrained optimization problem into an unconstrained one by applying the method of Lagrange multipliers. A high Reynolds number asymptotic framework is utilized, wherein the Navier–Stokes equations are reduced to the boundary region equations, in which wall deformations enter the problem through an appropriate Prandtl transformation. In the optimal control strategy, the wall displacement or the wall transpiration velocity serves as the control variable, while the cost functional is defined in terms of the wall shear stress. Our numerical results indicate, among other things, that the optimal control algorithm is very effective in reducing the amplitude of the Görtler vortices, especially for the control based on wall displacement.

Type
JFM Papers
Copyright
© 2018 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Agostini, L., Touber, E. & Leschziner, M. A. 2014 Spanwise oscillatory wall motion in channel flow: drag-reduction mechanisms inferred from DNS-predicted phase-wise property variations at Re = 1000. J. Fluid Mech. 743, 606635.Google Scholar
Bechert, D. W., Bruse, M., Hage, W., Van Der Hoeven, J. G. T. & Hoppe, G. 1997 Experiments on drag-reducing surfaces and their optimization with an adjustable geometry. J. Fluid Mech. 338, 5987.Google Scholar
Bewley, T. & Moin, P. 1994 Optimal control of turbulent channel flows. ASME DE 75, 221227.Google Scholar
Breuer, K. S., Haritonidis, J. H. & Landahl, M. T. 1989 The control of transient disturbances in a flat plate boundary layer through active wall motion. Phys. Fluids A 1, 574582.Google Scholar
Carlson, H. A. & Lumley, J. L. 1996 Active control in the turbulent wall layer of a minimal flow unit. J. Fluid Mech. 329, 341371.Google Scholar
Carpenter, P. W. 1998 Current status of the use of wall compliance for laminar-flow control. Exp. Therm. Fluid Sci. 16, 133140.Google Scholar
Cathalifaud, P. & Luchini, P. 2000 Algebraic growth in boundary layers: optimal control by blowing and suction at the wall. Eur. J. Mech. (B/Fluids) 19, 469490.Google Scholar
Cherubini, S., Robinet, J.-C. & De Palma, P. 2013 Nonlinear control of unsteady finite-amplitude perturbations in the blasius boundary-layer flow. J. Fluid Mech. 737, 440465.Google Scholar
Choi, H., Moin, P. & Kim, J. 1993 Direct numerical simulation of turbulent flow over riblets. J. Fluid Mech. 255, 503539.Google Scholar
Choi, H., Moin, P. & Kim, J. 1994 Active turbulence control for reduction in wall-bounded flows. J. Fluid Mech. 262, 75110.Google Scholar
Choi, K.-S., De Bisschop, J. R. & Clayton, B. R. 1998 Turbulent boundary layer control by means of spanwise-wall oscillation. AIAA J. 36, 11571163.Google Scholar
Corbett, P. & Bottaro, A. 2001 Optimal control of nonmodal disturbances in boundary layers. Theor. Comput. Fluid Dyn. 15, 6581.Google Scholar
Davies, C. & Carpenter, P. W. 1997 Numerical simulations of the evolution of Tollmien–Schlichting waves over finite compliant panels. J. Fluid Mech. 335, 361392.Google Scholar
Dhanak, M. R. & Si, C. 1999 On reduction of turbulent wall friction through spanwise wall oscillations. J. Fluid Mech. 383, 175195.Google Scholar
Du, Y. & Karniadakis, G. E. 2000 Suppressing wall turbulence by means of a transverse traveling wave. Science 288, 12301234.CrossRefGoogle ScholarPubMed
Duan, L. & Choudhari, M.2012 Effects of riblets on skin friction and heat transfer in high-speed turbulent boundary layers. AIAA Paper 2012-1108.Google Scholar
Duan, L., Wang, X. & Zhong, X. 2013 Stabilization of a mach 5.92 boundary layer by two-dimensional finite-height roughness. AIAA J. 51, 266270.Google Scholar
Endo, T., Kasagi, N. & Suzuki, Y. 2000 Feedback control of wall turbulence with wall deformation. Intl J. Heat Fluid Flow 21, 568575.Google Scholar
Fong, K., Wang, X. & Zhong, X. 2014 Numerical simulation of roughness effect on the stability of a hypersonic boundary layer. Comput. Fluids 96, 350367.Google Scholar
Gad-el Hak, M. 2002 Compliant coatings for drag reduction. Prog. Aerosp. Sci. 38, 7799.Google Scholar
Gad-el-Hak, M. & Blackwelder, R. F. 1989 Selective suction for controlling bursting events in a boundary layer. AIAA J. 27, 308.Google Scholar
Galionis, I. & Hall, P. 2005 On the stabilization of the most amplified Görtler vortex on a concave surface by spanwise oscillations. J. Fluid Mech. 527, 265283.Google Scholar
Garcia-Mayoral, R. & Jimenez, J. 2011 Drag reduction by riblets. Phil. Trans. R. Soc. Lond. A 369, 14121427.Google Scholar
Goldstein, M., Sescu, A., Duck, P. & Choudhari, M. 2010 The long range persistence of wakes behind a row of roughness elements. J. Fluid Mech. 644, 123163.Google Scholar
Goldstein, M., Sescu, A., Duck, P. & Choudhari, M. 2011 Algebraic/transcendental disturbance growth behind a row of roughness elements. J. Fluid Mech. 668, 236266.Google Scholar
Gunzburger, M. 2000 Adjoint equation-based methods for control problems in incompressible, viscous flows. Flow Turbul. Combust. 65, 249.Google Scholar
Hack, M. J. P. & Zaki, T. A. 2014 The influence of harmonic wall motion on transitional boundary layers. J. Fluid Mech. 760, 6394.Google Scholar
Hicks, P. D. & Ricco, P. 2015 Laminar streak growth above a spanwise oscillating wall. J. Fluid Mech. 768, 348374.Google Scholar
Hoepffner, J. & Fukagata, K. 2009 Pumping or drag reduction? J. Fluid Mech. 635, 171187.Google Scholar
Högberg, M., Bewley, T. R. & Henningson, D. S. 2003 Relaminarization of Re 𝜏 = 100 turbulence using gain scheduling and linear state feedback control. Phys. Fluids 15, 3572.CrossRefGoogle Scholar
Holloway, P. & Sterrett, J.1964 Effect of controlled surface roughness on boundary-layer transition and heat transfer at mach numbers of 4.8 and 6.0. NASA Tech. Rep. TN-D-2054.Google Scholar
Hou, J., Hokmabad, B. V. & Ghaemi, S. 2017 Three-dimensional measurement of turbulent flow over a riblet surface. Exp. Therm. Fluid Sci. 85, 229239.Google Scholar
Itoh, M., Tamano, S., Yokota, K. & Taniguchi, S. 2006 Drag reduction in a turbulent boundary layer on a flexible sheet undergoing a spanwise travelling wave motion. J. Turbul. 7, 117.Google Scholar
Jacobson, S. A. & Reynolds, W. C. 1998 Active control of streamwise vortices and streaks in boundary layers. J. Fluid Mech. 360, 179211.Google Scholar
Joslin, R., Gunzburger, M., Nicolaides, R., Erlebacher, G. & Hussaini, M. 1997 Self-contained automated methodology for optimal flow control. AIAA J. 35, 816824.Google Scholar
Jung, W. J., Mangiavachchi, N. & Akhavan, R. 1992 Suppression of turbulence in wall-bounded flows by high-frequency spanwise oscillations. Phys. Fluids A 4, 16051607.Google Scholar
Kang, S. & Choi, H. 2000 Active wall motions for skin-friction drag reduction. Phys. Fluids 12, 3301.Google Scholar
Karniadakis, G. E. & Choi, K.-S. 2003 Mechanisms on transverse motions in turbulent wall flows. Annu. Rev. Fluid Mech. 35, 4562.Google Scholar
Kim, J. 2003 Control of turbulent boundary layers. Phys. Fluids 15, 1093.Google Scholar
Koberg, H.2007 Turbulence control for drag reduction with active wall deformation. PhD thesis, Imperial College London.Google Scholar
Koumoutsakos, P. 1997 Active control of vortex-wall interactions. Phys. Fluids 9, 3808.Google Scholar
Koumoutsakos, P. 1999 Vorticity flux control for a turbulent channel flow. Phys. Fluids 11, 248.Google Scholar
Laadhari, F., Skandaji, L. & Morel, R. 2014 Turbulence reduction in a boundary layer by a local spanwise oscillating surface. Phys. Fluids 6, 32183220.Google Scholar
Larose, P. G. & Grotberg, J. B. 1996 Flutter and long-wave instabilities in compliant channels conveying developing flows. J. Fluid Mech. 331, 3758.Google Scholar
Lee, C., Kim, J. & Choi, H. 1998 Suboptimal control of turbulent channel flow for drag reduction. J. Fluid Mech. 358, 245258.Google Scholar
Lee, S. J. & Lee, S. H. 2001 Flow field analysis of a turbulent boundary layer over a riblet surface. Exp. Fluids 358, 153166.Google Scholar
Lee, T., Fisher, M. & Schwarz, W. H. 1993 Investigation of the stable interaction of a passive compliant surface with a turbulent boundary layer. J. Fluid Mech. 257, 373401.Google Scholar
Lienhart, H., Breuer, M. & Koksoy, C. 2008 Drag reduction by dimples? – a complementary experimental/numerical investigation. Intl J. Heat Fluid Flow 29, 783791.Google Scholar
Ligrani, P. M., Harrison, J. L., Mahmood, G. I. & Hill, M. L. 2001 Flow structure due to dimple depression on a channel surface. Phys. Fluids 13, 34423451.Google Scholar
Lu, L., Agostini, L., Ricco, P. & Papadakis, P. 2014 Optimal state feedback control of streaks and gortler vortices induced by free-stream vortical disturbances. In UKACC International Conference on Control, Loughborough, UK.Google Scholar
Luchini, P. & Bottaro, A. 2014 Adjoint equations in stability analysis. Annu. Rev. Fluid Mech. 46, 493517.Google Scholar
Lundell, F. & Alfredsson, P. H. 2003 Experiments on control of streamwise streaks. Eur. J. Mech. (B/Fluids) 22, 12791290.Google Scholar
Mani, R., Lagoudas, D. C. & Rediniotis, O. 2008 Active skin for turbulent drag reduction. Smart Mater. Struct. 17, 035004.Google Scholar
Meysonnat, P. S., Roggenkamp, D., Li, W., Roidl, B. & Schroder, W. 2016 Experimental and numerical investigation of transversal traveling surface waves for drag reduction. Eur. J. Mech. (B/Fluids) 55, 313323.Google Scholar
Moarref, R. & Jovanovic, M. R. 2012 Model-based design of transverse wall oscillations for turbulent drag reduction. J. Fluid Mech. 707, 205240.Google Scholar
Myose, R. Y. & Blackwelder, R. F. 1995 Control of streamwise vortices using selective suction. AIAA J. 33 (6), 10761080.Google Scholar
Pamies, M., Garnier, E., Merlen, A. & Sagaut, P. 2007 Response of a spatially developing turbulent boundary layer to active control strategies in the framework of opposition control. Phys. Fluids 19, 108102.Google Scholar
Papadakis, G., Lu, L. & Ricco, P. 2016 Closed-loop control of boundary layer streaks induced by free-stream turbulence. Phys. Rev. Fluids 1, 043501.Google Scholar
Park, D. & Park, S. O. 2016 Study of effect of a smooth bump on hypersonic boundary layer instability. Theor. Comput. Fluid Dyn. 30, 543563.Google Scholar
Patzold, A., Peltzer, I., Nitche, W., Goldin, N., King, R., Haller, D. & Woias, P. 2013 Active compliant wall for skin friction reduction. Intl J. Heat Fluid Flow 44, 8794.Google Scholar
Quadrio, M. 2011 Drag reduction in turbulent boundary layers by in-plane wall motion. Phil. Trans. R. Soc. Lond. A 369, 14281442.Google Scholar
Quadrio, M. & Ricco, P. 2003 Initial response of a turbulent channel flow to spanwise oscillation of the walls. J. Turbul. 4, N7.Google Scholar
Quadrio, M. & Ricco, P. 2004 Critical assessment of turbulent drag reduction through spanwise wall oscillations. J. Fluid Mech. 521, 251271.Google Scholar
Quadrio, M., Ricco, P. & Viotti, C. 2009 Streamwise-travelling waves of spanwise wall velocity for turbulent drag reduction. J. Fluid Mech. 627, 161178.Google Scholar
Reutov, V. P. & Rybushkina, G. V. 1998 Hydroelastic instability threshold in a turbulent boundary layer over a compliant coating. Phys. Fluids 10, 417425.Google Scholar
Ricco, P. 2011 Laminar streaks with spanwise wall forcing. Phys. Fluids 23, 064103.Google Scholar
Sasamori, M., Mamori, H., Iwamoto, K. & Murata, A. 2014 Experimental study on dragreduction effect due to sinusoidal riblets in turbulent channel flow. Exp. Fluids 55, 1828.Google Scholar
Schneider, P. S. 2001 Effects of high-speed tunnel noise on laminar-turbulent transition. J. Spacecr. Rockets 38, 323333.Google Scholar
Segawa, T., Kawaguchi, Y., Kikushima, Y. & Yoshida, H. 2002 Active control of streak structures in wall turbulence using an actuator array producing inclined wavy disturbances. J. Turbul. 3, 115.Google Scholar
Sescu, A., Taoudi, L. & Afsar, M. 2017 Iterative control of Görtler vortices via local wall deformations. Theor. Comput. Fluid Dyn. 32 (1), 6372.Google Scholar
Sescu, A. & Thompson, D. 2015 On the excitation of Görtler vortices by distributed roughness elements. Theor. Comput. Fluid Dyn. 29, 6792.Google Scholar
Skote, M. 2011 Turbulent boundary layer flow subject to streamwise oscillation of spanwise wall-velocity. Phys. Fluids 23, 081703.Google Scholar
Stroh, A., Frohnapfel, B., Schlatter, P. & Hasegawa, Y. 2015 A comparison of opposition control in turbulent boundary layer and turbulent channel flow. Phys. Fluids 27, 075101.Google Scholar
Swearingen, J. D. & Blackwelder, R. F. 1987 The growth and breakdown of streamwise vortices in the presence of a wall. J. Fluid Mech. 182, 255290.Google Scholar
Tay, C. M. J., Khoo, B. C. & Chew, Y. T. 2015 Mechanics of drag reduction by shallow dimples in channel flow. Phys. Fluids 27, 035109.Google Scholar
Tomiyama, N. & Fukagata, K. 2013 Direct numerical simulation of drag reduction in a turbulent channel flow using spanwise traveling wave-like wall deformation. Phys. Fluids 25, 105115.Google Scholar
Touber, E. & Leschziner, M. A. 2012 Near-wall streak modification by spanwise oscillatory wall motion and drag-reduction mechanisms. J. Fluid Mech. 693, 150200.Google Scholar
Walsh, M. J. 1983 Riblets as a viscous drag reduction technique. AIAA J. 21, 485486.Google Scholar
Wang, Z. Y., Yeo, K. S. & Khoo, B. C. 2006 DNS of low Reynolds number turbulent flows in dimpled channels. J. Turbul. 7, N37.Google Scholar
Wu, X., Zhao, D. & Luo, J. 2011 Excitation of steady and unsteady Görtler vortices by free-stream vortical disturbances. J. Fluid Mech. 682, 66100.Google Scholar
Xiao, D. & Papadakis, G. 2017 Nonlinear optimal control of bypass transition in a boundary layer flow. Phys. Fluids 29, 054103.Google Scholar
Yakeno, A., Hasegawa, Y. & Kasagi, N. 2014 Modification of quasi-streamwise vortical structure in a drag-reduced turbulent channel flow with spanwise wall oscillation. Phys. Fluids 26, 085109.Google Scholar
Yao, L. S. 1988 A note on Prandtl’s transposition theorem. Trans. ASME J. Heat Transfer 100, 507508.Google Scholar
Zuccher, S., Luchini, P. & Bottaro, A. 2004 Algebraic growth in a blasius boundary layer: optimal and robust control by mean suction in the nonlinear regime. Eur. J. Mech. (B/Fluids) 513, 135160.Google Scholar
Zverkov, I., Zanin, B. & Kozlov, V. 2008 Disturbances growth in boundary layers on classical and wavy surface wings. AIAA J. 46, 31493158.Google Scholar