Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-27T13:20:19.012Z Has data issue: false hasContentIssue false

Global analysis of Navier–Stokes and Boussinesq stochastic flows using dynamical orthogonality

Published online by Cambridge University Press:  07 October 2013

T. P. Sapsis*
Affiliation:
Department of Mechanical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA Courant Institute of Mathematical Sciences, New York University, 251 Mercer Street, New York, NY 10012, USA
M. P. Ueckermann
Affiliation:
Department of Mechanical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
P. F. J. Lermusiaux
Affiliation:
Department of Mechanical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
*
Email address for correspondence: sapsis@mit.edu

Abstract

We provide a new framework for the study of fluid flows presenting complex uncertain behaviour. Our approach is based on the stochastic reduction and analysis of the governing equations using the dynamically orthogonal field equations. By numerically solving these equations, we evolve in a fully coupled way the mean flow and the statistical and spatial characteristics of the stochastic fluctuations. This set of equations is formulated for the general case of stochastic boundary conditions and allows for the application of projection methods that considerably reduce the computational cost. We analyse the transformation of energy from stochastic modes to mean dynamics, and vice versa, by deriving exact expressions that quantify the interaction among different components of the flow. The developed framework is illustrated through specific flows in unstable regimes. In particular, we consider the flow behind a disk and the Rayleigh–Bénard convection, for which we construct bifurcation diagrams that describe the variation of the response as well as the energy transfers for different parameters associated with the considered flows. We reveal the low dimensionality of the underlying stochastic attractor.

Type
Papers
Copyright
©2013 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Antoine, J. P., Murenzi, R., Vandergheynst, P. & Ali, S. T. 2004 Two-Dimensional Wavelets and Their Relatives. Cambridge University Press.CrossRefGoogle Scholar
Auclair, F., Marsaleix, P. & De Mey, P. 2003 Space–time structure and dynamics of the forecast error in a coastal circulation model of the Gulf of Lions. Dyn. Atmos. Oceans 36, 309346.CrossRefGoogle Scholar
Berkooz, G., Holmes, P. & Lumley, J. 1993 The proper orthogonal decomposition in the analysis of turbulent flows. Annu. Rev. Fluid Mech. 25, 539575.CrossRefGoogle Scholar
Branicki, M. & Majda, A. J. 2012 Quantifying uncertainty for predictions with model error in non-Gaussian systems with intermittency. Nonlinearity 25, 25432578.CrossRefGoogle Scholar
Briscolini, M. & Santangelo, P. 1994 The non-Gaussian statistics of the velocity field in low-resolution large-eddy simulations of homogeneous turbulence. J. Fluid Mech. 270, 199218.CrossRefGoogle Scholar
Choi, M., Sapsis, T. P. & Karniadakis, G. E. 2013 A convergence study for SPDEs using combined polynomial chaos and dynamically-orthogonal schemes. J. Comput. Phys. 245, 281301.CrossRefGoogle Scholar
Chorin, A. J. 1974 Gaussian fields and random flow. J. Fluid. Mech. 85, 325347.Google Scholar
CPSMA, 1993 Statistics and Physical Oceanography. National Academies Press.Google Scholar
Cushman-Roisin, B. & Beckers, J. M. 2010 Introduction to Geophysical Fluid Dynamics. Physical and Numerical Aspects. Academic Press.Google Scholar
Daubechies, I. 1992 Ten Lectures on Wavelets. Society of Industrial and Applied Mathematics.CrossRefGoogle Scholar
Dee, D. P. & Da Silva, A. M. 2003 The choice of variable for atmospheric moisture analysis. Mon. Weath. Rev. 131, 155171.2.0.CO;2>CrossRefGoogle Scholar
Epstein, E. S. 1969 Stochastic dynamic predictions. Tellus 21, 739759.Google Scholar
Gebhart, B., Jaluria, Y., Mahajan, R. L. & Sammakia, B. 1988 Buoyancy-Induced Flows and Transport. Taylor and Francis.Google Scholar
Gelfgat, A., Bar-Yoseph, P. Z. & Yarin, A. L. 1999 Stability of multiple steady states of convection in laterally heated cavities. J. Fluid Mech. 338, 315334.CrossRefGoogle Scholar
Guermond, J. L., Minev, P. & Shen, J. 2006 An overview of projection methods for incompressible flows. Comput. Meth. Appl. Mech. Engng 195, 60116045.CrossRefGoogle Scholar
Haley, P. J. & Lermusiaux, P. F. J. 2010 Multiscale two-way embedding schemes for free-surface primitive equations in the ‘Multidisciplinary Simulation, Estimation and Assimilation System’. Ocean Dyn. 60, 14971537.CrossRefGoogle Scholar
Härtel, C., Meiburg, E. & Necker, F. 2000 Analysis and direct numerical simulation of the flow at a gravity-current head. Part 1. Flow topology and front speed for slip and no-slip boundaries. J. Fluid. Mech. 418, 189212.CrossRefGoogle Scholar
Holmes, P., Lumley, J. & Berkooz, G. 1996 Turbulence, Coherent Structures, Dynamical Systems and Symmetry. Cambridge University Press.CrossRefGoogle Scholar
Jaberi, F. A., Miller, R. S., Madnia, C. K. & Givi, P. 1996 Non-Gaussian scalar statistics in homogeneous turbulence. J. Fluid Mech. 313, 241282.CrossRefGoogle Scholar
Jansen, P. 2003 Nonlinear four-wave interactions and freak waves. J. Phys. Oceanogr. 33, 863884.2.0.CO;2>CrossRefGoogle Scholar
Knio, O. M. & Le Maitre, O. P. 2006 Uncertainty propagation in CFD using polynomial chaos decomposition. Fluid Dyn. Res. 38, 616640.CrossRefGoogle Scholar
Kundu, P. K., Cohen, I. M. & Dowling, D. R. 2012 Fluid Mechanics, 5th edn. Academic Press.Google Scholar
Lall, S., Marsden, J. E. & Glavaski, S. 2002 A subspace approach to balanced truncation for model reduction of nonlinear control systems. Intl J. Robust Nonlinear Control 12, 519535.CrossRefGoogle Scholar
Lermusiaux, P. F. J. 2006 Uncertainty estimation and prediction for interdisciplinary ocean dynamics. J. Comput. Phys. 217, 176199.CrossRefGoogle Scholar
Lermusiaux, P. F. J., Chiu, C.-S, Gawarkiewicz, G. G., Abbot, P., Robinson, A. R., Miller, R. N., Haley, P. J., Leslie, W. G., Majumdar, S. J., Pang, A. & Lekien, F. 2006 Quantifying uncertainties in ocean predictions. Oceanography 19, 92105.CrossRefGoogle Scholar
Lermusiaux, P. F. J., Chiu, C.-S. & Robinson, A. R. 2002 Modelling uncertainties in the prediction of the acoustic wavefield in a shelfbreak environment. In Proceedings of the 5th International Conference in Theoretical and Computational Acoustics, 21–25 May 2001 (ed. Shang, E.-C., Li, Q. & Gao, T. F.), pp. 191200. World Scientific.CrossRefGoogle Scholar
Li, Y. & Meneveau, C. 2005 Origin of non-Gaussian statistics in hydrodynamic turbulence. Phys. Rev. Lett. 95, 164502.CrossRefGoogle ScholarPubMed
Ma, Z., Rowley, C. W. & Tadmor, G. 2010 Snapshot-based balanced truncation for linear time-periodic systems. IEEE Trans. Autom. Control 55, 469473.Google Scholar
Le Maitre, O. P., Knio, O. M., Najm, H. & Ghanem, R. 2001 A stochastic projection method for fluid flow: basic formulation. J. Comput. Phys. 173, 481511.CrossRefGoogle Scholar
Majda, A. J. & Branicki, M. 2012 Lessons in uncertainty quantification for turbulent dynamical systems. Discrete Continuous Dyn. Syst. 32, 31333221.CrossRefGoogle Scholar
Marsch, E. & Tu, C.-Y. 1997 Intermittency, non-Gaussian statistics and fractal scaling of MHD fluctuations in the solar wind. Nonlinear Process. Geophys. 4, 101124.CrossRefGoogle Scholar
Monin, A. & Yaglom, A. 1971 Statistical Fluid Mechanics: Mechanics of Turbulence, I, II, MIT.Google Scholar
Noack, B. R., Afanasiev, K., Morzynski, M., Tadmor, G. & Thiele, F. 2003 A hierarchy of low-dimensional models for the transient and post-transient cylinder wake. J. Fluid. Mech. 497, 335363.CrossRefGoogle Scholar
Pallares, J., Grau, F. X. & Giralt, F. 1999 Flow transitions in laminar Rayleigh–Bénard convection in a cubical cavity at moderate Rayleigh numbers. Intl J. Heat Mass Transfer 42, 753769.CrossRefGoogle Scholar
Rempfer, D. & Fasel, H. F. 1994 Dynamics of three-dimensional coherent structures in a flat-plate boundary layer. J. Fluid Mech. 275, 257283.CrossRefGoogle Scholar
Roache, P. J. 1997 Quantification of uncertainty in computational fluid dynamics. Annu. Rev. Fluid Mech. 29, 123160.CrossRefGoogle Scholar
Sapsis, T. P. 2013 Attractor local dimensionality, nonlinear energy transfers, and finite-time instabilities in unstable dynamical systems with applications to 2D fluid flows. Proc. R. Soc. Lond. A 469 (2153), 20120550.Google Scholar
Sapsis, T. P. & Lermusiaux, P. F. J. 2009 Dynamically orthogonal field equations for continuous stochastic dynamical systems. Physica D 238, 23472360.CrossRefGoogle Scholar
Sapsis, T. P. & Lermusiaux, P. F. J. 2012 Dynamical criteria for the evolution of the stochastic dimensionality in flows with uncertainty. Physica D 241, 6076.CrossRefGoogle Scholar
Sapsis, T. P. & Majda, A. J. 2013a Blended reduced subspace algorithms for uncertainty quantification of quadratic systems with a stable mean state. Physica D 258, 6176.CrossRefGoogle Scholar
Sapsis, T. P. & Majda, A. J. 2013b Blending modified Gaussian closure and non-Gaussian reduced subspace methods for turbulent dynamical systems. J. Nonlinear Sci. (in press). doi:10.1007/s00332-013-9178-1.CrossRefGoogle Scholar
Sapsis, T. P. & Majda, A. J. 2013c A statistically accurate modified quasilinear Gaussian closure for uncertainty quantification in turbulent dynamical systems. Physica D 252, 3445.CrossRefGoogle Scholar
Schertzer, D. & Lovejoy, S. 1987 Physically based rain and cloud modelling by anisotropic multiplicative turbulent cascades. J. Geophys. Res. 92, 96939714.CrossRefGoogle Scholar
Sirovich, L. 1987 Turbulence and the dynamics of coherent structures. Parts I, II and III. Q. Appl. Maths XLV, 561590.CrossRefGoogle Scholar
Sura, P. 2010 On non-Gaussian SST variability in the Gulf Stream and other strong currents. Ocean Dyn. 60, 155170.CrossRefGoogle Scholar
Tadmor, G., Lehmann, O., Noack, B. R., Cordier, L., Delville, J., Bonnet, J. P. & Morzynski, M. 2011 Reduced order models for closed-loop wake control. Phil. Trans. R. Soc. A 369, 15131524.CrossRefGoogle ScholarPubMed
Tadmor, G., Lehmann, O., Noack, B. R. & Morzynski, M. 2010 Mean field representation of the natural and actuated cylinder wake flow. Phys. Fluids 22, 034102.CrossRefGoogle Scholar
Ueckermann, M. P., Lermusiaux, P. F. J. & Sapsis, T. P. 2013 Numerical schemes for dynamically orthogonal equations of stochastic fluid and ocean flows. J. Comput. Phys. 233, 272294.CrossRefGoogle Scholar
Venturi, D., Wan, X. & Karniadakis, G. 2008 Stochastic low-dimensional modelling of a random laminar wake past a circular cylinder. J. Fluid Mech. 606, 339367.CrossRefGoogle Scholar
Venturi, D., Wan, X. & Karniadakis, G. 2010 Stochastic bifurcation analysis of Rayleigh–Bénard convection. J. Fluid Mech. 650, 391413.CrossRefGoogle Scholar
Vincent, A. & Meneguzzi, M. 1991 The spatial structure and statistical properties of homogeneous turbulence. J. Fluid Mech. 225, 120.CrossRefGoogle Scholar
Xiu, D. & Karniadakis, G. 2003 Modelling uncertainty in flow simulations via generalized polynomial chaos. J. Comput. Phys. 187, 137167.CrossRefGoogle Scholar
Zorich, V. A. 2004 Mathematical Analysis, II, Springer.Google Scholar