Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-12T10:55:13.610Z Has data issue: false hasContentIssue false

The generation of screech tones by shock leakage

Published online by Cambridge University Press:  15 December 2020

Daniel Edgington-Mitchell*
Affiliation:
Department of Mechanical and Aerospace Engineering, Monash University, VIC3800, Australia
Joel Weightman
Affiliation:
Department of Mechanical and Aerospace Engineering, Monash University, VIC3800, Australia
Samuel Lock
Affiliation:
Department of Mechanical and Aerospace Engineering, Monash University, VIC3800, Australia
Rhiannon Kirby
Affiliation:
Department of Mechanical and Aerospace Engineering, Monash University, VIC3800, Australia
Vineeth Nair
Affiliation:
Department of Aerospace Engineering, Indian Institute of Technology Bombay, Mumbai400076, India
Julio Soria
Affiliation:
Department of Mechanical and Aerospace Engineering, Monash University, VIC3800, Australia
Damon Honnery
Affiliation:
Department of Mechanical and Aerospace Engineering, Monash University, VIC3800, Australia
*
Email address for correspondence: daniel.mitchell@monash.edu

Abstract

The mechanism underpinning the generation of screech tones has remained an open question for many years. In this paper, direct experimental observations of the shock-leakage mechanism first proposed by Manning & Lele (AIAA Paper 1998, p. 282) are presented. Ultra-high-speed schlieren images are filtered to preserve only upstream-propagating components, with the upstream motion of the shock tip and subsequent emission of an acoustic wave visible for a number of operating conditions. The flow visualizations are supported by the ray-tracing model for shock leakage of Shariff & Manning (Phys. Fluids., vol. 25, issue 7, 2013, 076103), applied to velocity fields corresponding to a reconstructed screech cycle. The predictions of the model, when applied to real data, are in close agreement with the phenomena observed in the flow visualizations. It is demonstrated that shock leakage does not necessarily occur either at the point of maximum wave amplitude or maximum vorticity fluctuation. While the first point of shock leakage is shown to vary between cases, sound emission from multiple sources is observed for most cases considered. Finally, it is shown that variations in vortex strength captured in the velocity data are sufficient to explain variation in shock-leakage location observed in the flow visualization data.

Type
JFM Papers
Copyright
© The Author(s), 2020. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

André, B., Castelain, T. & Bailly, C. 2012 Shock oscillations in a supersonic jet exhibiting antisymmetrical screech. AIAA J. 50 (9), 20172020.CrossRefGoogle Scholar
Barone, M. F. & Lele, S. K. 2005 Receptivity of the compressible mixing layer. J. Fluid Mech. 540, 301335.CrossRefGoogle Scholar
Bell, G., Soria, J., Honnery, D. & Edgington-Mitchell, D. 2018 An experimental investigation of coupled underexpanded supersonic twin-jets. Exp. Fluids 59 (9), 139.CrossRefGoogle Scholar
Beneddine, S., Mettot, C. & Sipp, D. 2015 Global stability analysis of underexpanded screeching jets. Eur. J. Mech. B/Fluids 49, 392399.CrossRefGoogle Scholar
Berland, J., Bogey, C. & Bailly, C. 2007 Numerical study of screech generation in a planar supersonic jet. Phys. Fluids 19, 075105.CrossRefGoogle Scholar
Bogey, C. & Gojon, R. 2017 Feedback loop and upwind-propagating waves in ideally expanded supersonic impinging round jets. J. Fluid Mech. 823, 562591.CrossRefGoogle Scholar
Cavalieri, A. V. G., Rodríguez, D., Jordan, P., Colonius, T. & Gervais, Y. 2013 Wavepackets in the velocity field of turbulent jets. J. Fluid Mech. 730, 559592.CrossRefGoogle Scholar
Dosanjh, D. S. & Weeks, T. M. 1965 Interaction of a starting vortex as well as a vortex street with a traveling shock wave. AIAA J. 3 (2), 216223.CrossRefGoogle Scholar
Edgington-Mitchell, D. 2019 Aeroacoustic resonance and self-excitation in screeching and impinging supersonic jets – a review. Intl J. Aeroacoust. 18 (2–3), 118188.CrossRefGoogle Scholar
Edgington-Mitchell, D., Duke, D., Amili, O., Weightman, J., Honnery, D. R. & Soria, J. 2015 a Measuring shear layer growth rates in aeroacoustically forced axisymmetric supersonic jets. In 21st AIAA/CEAS Aeroacoustics Conference, p. 2834. AIAA.CrossRefGoogle Scholar
Edgington-Mitchell, D. M., Duke, D., Wang, T., Harris, D., Schmidt, O. T., Jaunet, V., Jordan, P. & Towne, A. 2019 Modulation of downstream-propagating waves in aeroacoustic resonance. In 25th AIAA/CEAS Aeroacoustics Conference, p. 2689. AIAA.CrossRefGoogle Scholar
Edgington-Mitchell, D., Honnery, D. R. & Soria, J. 2014 a Instability modes in screeching elliptical jets. In 20th AIAA/CEAS Aeroacoustics Conference. AIAA.CrossRefGoogle Scholar
Edgington-Mitchell, D., Honnery, D. R. & Soria, J. 2014 b The underexpanded jet mach disk and its associated shear layer. Phys. Fluids 26 (9), 096101.CrossRefGoogle Scholar
Edgington-Mitchell, D., Honnery, D. R. & Soria, J. 2015 b Multimodal instability in the weakly underexpanded elliptic jet. AIAA J. 53 (9), 27392749.CrossRefGoogle Scholar
Edgington-Mitchell, D., Jaunet, V., Jordan, P., Towne, A., Soria, J. & Honnery, D. 2018 a Upstream-travelling acoustic jet modes as a closure mechanism for screech. J. Fluid Mech. 855, R1.CrossRefGoogle Scholar
Edgington-Mitchell, D., Oberleithner, K., Honnery, D. R. & Soria, J. 2014 c Coherent structure and sound production in the helical mode of a screeching axisymmetric jet. J. Fluid Mech. 748, 822847.CrossRefGoogle Scholar
Edgington-Mitchell, D. M., Weightman, J. L., Honnery, D. R. & Soria, J. 2018 b Sound production by shock leakage in supersonic jet screech. In 2018 AIAA/CEAS Aeroacoustics Conference, p. 3147. AIAA.CrossRefGoogle Scholar
Ellzey, J. L., Henneke, M. R., Picone, J. M. & Oran, E. S. 1995 The interaction of a shock with a vortex: shock distortion and the production of acoustic waves. Phys. Fluids 7 (1), 172184.CrossRefGoogle Scholar
Gojon, R., Bogey, C. & Marsden, O. 2016 Investigation of tone generation in ideally expanded supersonic planar impinging jets using large-eddy simulation. J. Fluid Mech. 808, 90115.CrossRefGoogle Scholar
Gojon, R., Bogey, C. & Mihaescu, M. 2018 Oscillation modes in screeching jets. AIAA J. 56 (7), 29182924.CrossRefGoogle Scholar
Guichard, L., Vervisch, L. & Domingo, P. 1995 Two-dimensional weak shock-vortex interaction in a mixing zone. AIAA J. 33 (10), 17971802.CrossRefGoogle Scholar
Haller, G. 2015 Lagrangian coherent structures. Annu. Rev. Fluid Mech. 47, 137162.CrossRefGoogle Scholar
Hollingsworth, W. A. 1955 A schlieren study of the interaction between a vortex and a shock wave in a shock tube. British Aeronaut. Research Council Rept. 17,985.Google Scholar
Hussain, A. & Reynolds, W. 1970 The mechanics of an organized wave in turbulent shear flow. J. Fluid Mech. 41, 241258.CrossRefGoogle Scholar
Jaunet, V., Collin, E. & Delville, J. 2016 Pod-Galerkin advection model for convective flow: application to a flapping rectangular supersonic jet. Exp. Fluids 57 (5), 84.CrossRefGoogle Scholar
Jordan, P., Jaunet, V., Towne, A., Cavalieri, A. V. G., Colonius, T., Schmidt, O. & Agarwal, A. 2018 Jet–flap interaction tones. J. Fluid Mech. 853, 333358.CrossRefGoogle Scholar
Karami, S., Stegeman, P. C., Ooi, A., Theofilis, V. & Soria, J. 2020 Receptivity characteristics of under-expanded supersonic impinging jets. J. Fluid Mech. 889, A27.CrossRefGoogle Scholar
Knast, T., Bell, G., Wong, M., Leb, C. M., Soria, J., Honnery, D. R. & Edgington-Mitchell, D. 2018 Coupling modes of an underexpanded twin axisymmetric jet. AIAA J. 56 (9), 35243535.CrossRefGoogle Scholar
Li, X., He, F., Zhang, X., Hao, P. & Yao, Z. 2019 Shock motion and flow structure of an underexpanded jet in the helical mode. AIAA J. 57 (9), 39433953.CrossRefGoogle Scholar
Mancinelli, M., Jaunet, V., Jordan, P. & Towne, A. 2019 Screech-tone prediction using upstream-travelling jet modes. Exp. Fluids 60 (1), 22.CrossRefGoogle Scholar
Manning, T. A. & Lele, S. K. 1998 Numerical simulations of shock vortex interactions in supersonic jet screech. In AIAA Paper, p. 282.Google Scholar
Manning, T. & Lele, S. 2000 A numerical investigation of sound generation in supersonic jet screech. In 21st AIAA Aeroacoustics Conference. AIAA.CrossRefGoogle Scholar
Meadows, K. R., Kumar, A. & Hussaini, M. Y. 1991 Computational study on the interaction between a vortex and a shock wave. AIAA J. 29 (2), 174179.CrossRefGoogle Scholar
Mercier, B., Castelain, T. & Bailly, C. 2017 Experimental characterisation of the screech feedback loop in underexpanded round jets. J. Fluid Mech. 824, 202229.CrossRefGoogle Scholar
Mitchell, D. M., Honnery, D. R. & Soria, J. 2012 The visualization of the acoustic feedback loop in impinging underexpanded supersonic jet flows using ultra-high frame rate schlieren. J. Vis. 15 (4), 333341.CrossRefGoogle Scholar
Mitchell, D. M., Honnery, D. R. & Soria, J. 2013 Near-field structure of underexpanded elliptic jets. Exp. Fluids 54 (7), 1578.CrossRefGoogle Scholar
Nogueira, P. A. S., Cavalieri, A. V. G., Jordan, P. & Jaunet, V. 2019 Large-scale streaky structures in turbulent jets. J. Fluid Mech. 873, 211237.CrossRefGoogle Scholar
Norum, T. D. 1983 Screech suppression in supersonic jets. AIAA J. 21 (2), 235240.CrossRefGoogle Scholar
Oberleithner, K., Sieber, M., Nayeri, C. N., Paschereit, C. O., Petz, C., Hege, H.-C., Noack, B. R. & Wygnanski, I. 2011 Three-dimensional coherent structures in a swirling jet undergoing vortex breakdown: stability analysis and empirical mode construction. J. Fluid Mech. 679, 383414.CrossRefGoogle Scholar
Panda, J. 1998 Shock oscillation in underexpanded screeching jets. J. Fluid Mech. 363, 173198.CrossRefGoogle Scholar
Poldervaart, L. J., Vink, A. T. & Wijnands, A. P. J. 1968 The photographic evidence of the feedback loop of a two dimensional screeching supersonic jet of air. In Proceedings of the 6th International Congress on Acoustics, Tokyo, Japan. Acoustic Materials Association of Japan.Google Scholar
Powell, A. 1953 a The noise of choked jets. J. Acoust. Soc. Am. 25 (3), 385389.CrossRefGoogle Scholar
Powell, A. 1953 b On the mechanism of choked jet noise. Proc. Phys. Soc. Lond. B 66, 10391056.CrossRefGoogle Scholar
Powell, A., Umeda, Y. & Ishii, R. 1992 Observations of the oscillation modes of choked circular jets. J. Acoust. Soc. Am. 92, 28232836.CrossRefGoogle Scholar
Premchand, C. P., George, N. B., Raghunathan, M., Unni, V. R., Sujith, R. I. & Nair, V. 2019 Lagrangian analysis of intermittent sound sources in the flow-field of a bluff-body stabilized combustor. Phys. Fluids 31 (2), 025115.CrossRefGoogle Scholar
Raman, G. 1997 Cessation of screech in underexpanded jets. J. Fluid Mech. 336, 6990.CrossRefGoogle Scholar
Raman, G. 1998 Advances in understanding supersonic jet screech: review and perspective. Prog. Aerosp. Sci. 34 (1–2), 45106.CrossRefGoogle Scholar
Ribner, H. S. 1959 The sound generated by interaction of a single vortex with a shock wave. Tech. Rep. University of Toronto.Google Scholar
Schmidt, O. T., Towne, A., Colonius, T., Cavalieri, A. V. G., Jordan, P. & Brès, G. A. 2017 Wavepackets and trapped acoustic modes in a turbulent jet: coherent structure eduction and global stability. J. Fluid Mech. 825, 11531181.CrossRefGoogle Scholar
Seiner, J. 1984 Advances in high speed jet aeroacoustics. In 9th Aeroacoustics Conference, p. 2275.Google Scholar
Shariff, K. & Manning, T. A. 2013 A ray tracing study of shock leakage in a model supersonic jet. Phys. Fluids 25 (7), 076103.CrossRefGoogle Scholar
Sirovich, L. 1987 Turbulence and the dynamics of coherent structures. I. Coherent structures. Q. Appl. Maths 45 (3), 561571.CrossRefGoogle Scholar
Soria, J. 1996 An investigation of the near wake of a circular cylinder using a video-based digital cross-correlation particle image velocimetry technique. Expl Therm. Fluid Sci. 12, 221233.CrossRefGoogle Scholar
Suzuki, T. & Lele, S. K. 2003 Shock leakage through an unsteady vortex-laden mixing layer: application to jet screech. J. Fluid Mech. 490, 139167.CrossRefGoogle Scholar
Taira, K., Brunton, S. L., Dawson, S. T. M., Rowley, C. W., Colonius, T., McKeon, B. J., Schmidt, O. T., Gordeyev, S., Theofilis, V. & Ukeiley, L. S. 2017 Modal analysis of fluid flows: an overview. AIAA J. 55 (12), 40134041.CrossRefGoogle Scholar
Tam, C. 1995 Supersonic jet noise. Annu. Rev. Fluid Mech. 27, 1743.CrossRefGoogle Scholar
Tam, C. K. W. & Ahuja, K. K. 1990 Theoretical model of discrete tone generation by impinging jets. J. Fluid Mech. 214, 6787.CrossRefGoogle Scholar
Tam, C. K. W., Parrish, S. A. & Viswanathan, K. 2014 Harmonics of jet screech tones. AIAA J. 52 (11), 24712479.CrossRefGoogle Scholar
Tam, C. K. W., Seiner, J. M. & Yu, J. C. 1986 Proposed relationship between broadband shock associated noise and screech tones. J. Sound Vib. 110 (2), 309321.CrossRefGoogle Scholar
Tan, D. J., Soria, J., Honnery, D. & Edgington-Mitchell, D. 2017 Novel method for investigating broadband velocity fluctuations in axisymmetric screeching jets. AIAA J. 55 (7), 23212334.CrossRefGoogle Scholar
Towne, A., Cavalieri, A. V. G., Jordan, P., Colonius, T., Schmidt, O., Jaunet, V. & Brès, G. A. 2017 Acoustic resonance in the potential core of subsonic jets. J. Fluid Mech. 825, 11131152.CrossRefGoogle Scholar
Umeda, Y. & Ishii, R. 2002 Existence of mach cones and helical vortical structures around the underexpanded circular jet in the helical oscillation mode. J. Acoust. Soc. Am. 112, 99107.CrossRefGoogle ScholarPubMed
Weightman, J. L., Amili, O., Honnery, D., Edgington-Mitchell, D. & Soria, J. 2019 Nozzle external geometry as a boundary condition for the azimuthal mode selection in an impinging underexpanded jet. J. Fluid Mech. 862, 421448.CrossRefGoogle Scholar
Weightman, J. L., Amili, O., Honnery, D., Soria, J. & Edgington-Mitchell, D. 2017 An explanation for the phase lag in supersonic jet impingement. J. Fluid Mech. 815, R1.CrossRefGoogle Scholar
Weightman, J. L., Amili, O., Honnery, D., Soria, J. & Edgington-Mitchell, D. 2018 Signatures of shear-layer unsteadiness in proper orthogonal decomposition. Exp. Fluids 59 (12), 180.CrossRefGoogle Scholar
Willert, C., Mitchell, D. & Soria, J. 2012 An assessment of high-power light-emitting diodes for high frame rate schlieren imaging. Exp. Fluids 53, 413421.CrossRefGoogle Scholar

Edgington-Mitchell et al. supplementary movie 1

Schlieren visualizations at 1MFps of shock leakage in a twin jet.

Download Edgington-Mitchell et al. supplementary movie 1(Video)
Video 1.1 MB

Edgington-Mitchell et al. supplementary movie 2

Various examples of schlieren visualizations at 1MFps of shock leakage in a twin jet.

Download Edgington-Mitchell et al. supplementary movie 2(Video)
Video 10.2 MB

Edgington-Mitchell et al. supplementary movie 3

Schlieren visualizations at 1MFps of shock leakage in the flapping mode of an axisymmetric jet.

Download Edgington-Mitchell et al. supplementary movie 3(Video)
Video 11.4 MB

Edgington-Mitchell et al. supplementary movie 4

Schlieren visualizations at 1MFps of shock leakage in the toroidal mode of an axisymmetric jet.

Download Edgington-Mitchell et al. supplementary movie 4(Video)
Video 668.9 KB

Edgington-Mitchell et al. supplementary movie 5

Various examples of schlieren visualizations at 1MFps of shock leakage in the toroidal mode of an axisymmetric jet.
Download Edgington-Mitchell et al. supplementary movie 5(Video)
Video 14.4 MB

Edgington-Mitchell et al. supplementary movie 6

Geometrical acoustics ray tracing predictions of shock leakage overlaid with Finite-Time Lyapunov Exponent contours.
Download Edgington-Mitchell et al. supplementary movie 6(Video)
Video 3.5 MB