Hostname: page-component-65b85459fc-tjtgf Total loading time: 0 Render date: 2025-10-16T02:47:50.021Z Has data issue: false hasContentIssue false

Frozen waves in the inertial regime

Published online by Cambridge University Press:  14 October 2025

Benoit-Joseph Gréa*
Affiliation:
CEA, DAM, DIF, F-91297 Arpajon, France CEA, LMCE, Université Paris-Saclay, F-91680 Bruyères-le-Châtel, France
Andrés Castillo-Castellanos
Affiliation:
Centre Borelli, ENS Paris-Saclay, France
Antoine Briard
Affiliation:
CEA, DAM, DIF, F-91297 Arpajon, France
Alexis Banvillet
Affiliation:
CEA, DAM, CESTA, F-33114 Le Barp, France
Nicolas Lion
Affiliation:
CEA, DAM, CESTA, F-33114 Le Barp, France
Catherine Canac
Affiliation:
CEA, DAM, CESTA, F-33114 Le Barp, France
Kevin Dagrau
Affiliation:
CEA, DAM, CESTA, F-33114 Le Barp, France
Pauline Duhalde
Affiliation:
CEA, DAM, CESTA, F-33114 Le Barp, France
*
Corresponding author: Benoit-Joseph Gréa, benoit-joseph.grea@cea.fr

Abstract

Interfaces subjected to strong time-periodic horizontal accelerations exhibit striking patterns known as frozen waves. In this study, we experimentally and numerically investigate the formation of such structures in immiscible fluids under high-frequency forcing. In the inertial regime – characterised by large Reynolds and Weber numbers, where viscous and surface tension effects become negligible – we demonstrate that the amplitude of frozen waves scales proportionally with the square of the forcing velocity. These results are consistent with vibro-equilibria theory and extend the theoretical framework proposed by Gréa & Briard (2019 Phys. Rev. Fluids 4, 064608) to immiscible fluids with large density contrasts. Furthermore, we examine the influence of both Reynolds and Weber numbers, not only in the onset of secondary Faraday instabilities – which drive the transition of frozen wave patterns toward a homogenised turbulent state – but also in selecting the dominant wavelength in the final saturated regime.

Information

Type
JFM Papers
Copyright
© The Author(s), 2025. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Benjamin, T.B. & Ursell, F. 1954 The stability of the plane free surface of a liquid in vertical periodic motion. Proc. R. Soc. Lond. A Math. Phys. Engng Sci. 225 (1163), 505515.Google Scholar
Beysens, D. 2006 Vibrations in space as an artificial gravity? Europhys. News 37 (3), 2225.10.1051/epn:2006304CrossRefGoogle Scholar
Beysens, D., Garrabos, Y., Chatain, D. & Evesque, P. 2009 Phase transition under forced vibrations in critical CO2 . Europhys. Lett. 86 (1), 16003.10.1209/0295-5075/86/16003CrossRefGoogle Scholar
Bezdenezhnykh, N.A., Briskman, V.A., Lapin, A.Yu, Lyubimov, D.V., Lyubimova, T.P., Tcherepanov, A.A. & Zakharov, I.V. 1992 The influence of high frequency tangential vibrations on the stability of the fluid interfaces in microgravity. In Microgravity Fluid Mechanics: IUTAM Symposium Bremen 1991, pp. 137144. Springer.10.1007/978-3-642-50091-6_14CrossRefGoogle Scholar
Briard, A., Gostiaux, L. & Gréa, B.-J. 2020 The turbulent Faraday instability in miscible fluids. J. Fluid Mech. 883, A57.10.1017/jfm.2019.920CrossRefGoogle Scholar
Bunner, B. & Tryggvason, G. 2002 Dynamics of homogeneous bubbly flows part 2. Velocity fluctuations. J. Fluid Mech. 466, 5384.CrossRefGoogle Scholar
Cavelier, M., Gréa, B.-J., Briard, A. & Gostiaux, L. 2022 The subcritical transition to turbulence of Faraday waves in miscible fluids. J. Fluid Mech. 934, A34.10.1017/jfm.2021.1124CrossRefGoogle Scholar
Chassaing, P., Antonia, R.A., Anselmet, F., Joly, L. & Sarkar, S. 2013 Variable Density Fluid Turbulence, vol. 69. Springer Science & Business Media.Google Scholar
Choudhary, K.P., Das, S.P. & Tiwari, S. 2024 Effect of depth ratio on frozen wave instability in immiscible liquids. Phys. Fluids 36 (12), 122107.CrossRefGoogle Scholar
Faraday, M. 1831 On the forms and states of fluids on vibrating elastic surfaces. Phil. Trans. R. Soc. Lond. 121, 319340.Google Scholar
Fernández, J., Sánchez, P.S., Tinao, I., Porter, J. & Ezquerro, J.M. 2017 a The CFVib experiment: control of fluids in microgravity with vibrations. Microgravity Sci. Technol. 29, 351364.10.1007/s12217-017-9556-7CrossRefGoogle Scholar
Fernández, J., Tinao, I., Porter, J. & Laverón-Simavilla, A. 2017 b Instabilities of vibroequilibria in rectangular containers. Phys. Fluids 29 (2), 024108.10.1063/1.4976719CrossRefGoogle Scholar
Fuster, D. & Rossi, M. 2021 Vortex-interface interactions in two-dimensional flows. Intl J. Multiphase Flow 143, 103757.10.1016/j.ijmultiphaseflow.2021.103757CrossRefGoogle Scholar
Gandikota, G., Chatain, D., Amiroudine, S., Lyubimova, T. & Beysens, D. 2014 Frozen-wave instability in near-critical hydrogen subjected to horizontal vibration under various gravity fields. Phys. Rev. E 89 (1), 012309.10.1103/PhysRevE.89.012309CrossRefGoogle ScholarPubMed
Ganiev, R.F., Lakiza, V.D. & Tsapenko, A.S. 1977 Dynamic behavior of the free liquid surface subject to vibrations under conditions of near-zero gravity. Prikladnaia Mekhanika 13, 102107.Google Scholar
Gaponenko, Y., Torregrosa, M.M., Yasnou, V., Mialdun, A. & Shevtsova, V. 2015 a Interfacial pattern selection in miscible liquids under vibration. Soft Matt. 11 (42), 82218224.CrossRefGoogle ScholarPubMed
Gaponenko, Y.A., Torregrosa, M., Yasnou, V., Mialdun, A. & Shevtsova, V. 2015 b Dynamics of the interface between miscible liquids subjected to horizontal vibration. J. Fluid Mech. 784, 342372.CrossRefGoogle Scholar
García Bennett, V., Salgado Sánchez, P., Gligor, D. & Porter, J. 2021 Drifting frozen waves. Phys. Rev. E 104, 045107.10.1103/PhysRevE.104.045107CrossRefGoogle ScholarPubMed
Gavrilyuk, I., Lukovsky, I. & Timokha, A. 2004 Two-dimensional variational vibroequilibria and Faraday’s drops. Z. Angew. Math. Phys. 55, 10151033.CrossRefGoogle Scholar
Gershuni, G.Z., Kolesnikov, A.K., Legros, J.-C. & Myznikova, B.I. 1997 On the vibrational convective instability of a horizontal, binary-mixture layer with Soret effect. J. Fluid Mech. 330, 251269.10.1017/S002211209600376XCrossRefGoogle Scholar
Gligor, D., Salgado Sánchez, P., Porter, J. & Shevtsova, V. 2020 Influence of gravity on the frozen wave instability in immiscible liquids. Phys. Rev. Fluids 5 (8), 084001.10.1103/PhysRevFluids.5.084001CrossRefGoogle Scholar
González-Viñas, W. & Salán, J. 1994 Surface waves periodically excited in a CO2 tube. Europhys. Lett. 26 (9), 665.10.1209/0295-5075/26/9/005CrossRefGoogle Scholar
Grayer II, H., Yalim, J., Welfert, B.D. & Lopez, J.M. 2021 Stably stratified square cavity subjected to horizontal oscillations: responses to small amplitude forcing. J. Fluid Mech. 915, A85.CrossRefGoogle Scholar
Gréa, B.-J. & Ebo Adou, A. 2018 What is the final size of turbulent mixing zones driven by the Faraday instability. J. Fluid Mech. 837, 293319.10.1017/jfm.2017.837CrossRefGoogle Scholar
Gréa, B.-J. & Briard, A. 2019 Frozen waves in turbulent mixing layers. Phys. Rev. Fluids 4, 064608.10.1103/PhysRevFluids.4.064608CrossRefGoogle Scholar
Hunt, J.C.R. & Carruthers, D.J. 1990 Rapid distortion theory and the ‘problems’ of turbulence. J. Fluid Mech. 212, 497532.10.1017/S0022112090002075CrossRefGoogle Scholar
Ibrahim, R.A. 2005 Liquid Sloshing Dynamics,(Theory and Applications). Cambridge University Press.10.1017/CBO9780511536656CrossRefGoogle Scholar
Ivanova, A.A., Kozlov, V.G. & Evesque, P. 2001 a Interface dynamics of immiscible fluids under horizontal vibration. Fluid Dyn. 36 (3), 362368.10.1023/A:1019223732059CrossRefGoogle Scholar
Ivanova, A.A., Kozlov, V.G. & Tashkinov, S.I. 2001 b Interface dynamics of immiscible fluids under circularly polarized vibration (experiment). Fluid Dyn. 36 (6), 871879.10.1023/A:1017902307525CrossRefGoogle Scholar
Jalikop, S.V. & Juel, A. 2009 Steep capillary-gravity waves in oscillatory shear-driven flows. J. Fluid Mech. 640, 131150.10.1017/S0022112009991509CrossRefGoogle Scholar
Kelly, R.E. 1965 The stability of an unsteady Kelvin–Helmholtz flow. J. Fluid Mech. 22 (3), 547560.10.1017/S0022112065000964CrossRefGoogle Scholar
Khenner, M.V., Lyubimov, D.V., Belozerova, T.S. & Roux, B. 1999 Stability of plane-parallel vibrational flow in a two-layer system. Eur. J. Mech. B/ Fluids 18 (6), 10851101.10.1016/S0997-7546(99)00143-0CrossRefGoogle Scholar
Legendre, M., Petitjeans, P. & Kurowski, P. 2003 Instabilités à l’interface entre fluides miscibles par forçage oscillant horizontal. C. R. Méc 331 (9), 617622.10.1016/S1631-0721(03)00127-XCrossRefGoogle Scholar
Lyubimov, D.V. & Cherepanov, A.A. 1986 Development of a steady relief at the interface of fluids in a vibrational field. Fluid Dyn. 21 (6), 849854.10.1007/BF02628017CrossRefGoogle Scholar
Lyubimov, D.V., Khilko, G.L., Ivantsov, A.O. & Lyubimova, T.P. 2017 Viscosity effect on the longwave instability of a fluid interface subjected to horizontal vibrations. J. Fluid Mech. 814, 2441.10.1017/jfm.2017.28CrossRefGoogle Scholar
Lyubimova, T., Ivantsov, A., Garrabos, Y., Lecoutre, C. & Beysens, D. 2019 Faraday waves on band pattern under zero gravity conditions. Phys. Rev. Fluids 4, 064001.10.1103/PhysRevFluids.4.064001CrossRefGoogle Scholar
Lyubimova, T., Ivantsov, A., Garrabos, Y., Lecoutre, C., Gandikota, G. & Beysens, D. 2017 Band instability in near-critical fluids subjected to vibration under weightlessness. Phys. Rev. E 95, 013105.CrossRefGoogle ScholarPubMed
Mialdun, A., Ryzhkov, I.I., Melnikov, D.E. & Shevtsova, V. 2008 Experimental evidence of thermal vibrational convection in a nonuniformly heated fluid in a reduced gravity environment. Phys. Rev. Lett. 101, 084501.10.1103/PhysRevLett.101.084501CrossRefGoogle Scholar
Miles, J. & Henderson, D. 1990 Parametrically forced surface waves. Annu. Rev. Fluid Mech. 22 (1), 143165.10.1146/annurev.fl.22.010190.001043CrossRefGoogle Scholar
Pope, S.B. 2000 Turbulent Flows. Cambridge University Press.Google Scholar
Popinet, S. 2009 An accurate adaptive solver for surface-tension-driven interfacial flows. J. Comput. Phys. 228 (16), 58385866.10.1016/j.jcp.2009.04.042CrossRefGoogle Scholar
Popinet, S. 2015 A quadtree-adaptive multigrid solver for the Serre–Green–Naghdi equations. J. Comput. Phys. 302, 336358.10.1016/j.jcp.2015.09.009CrossRefGoogle Scholar
Popinet, S. 2018 Numerical models of surface tension. Annu. Rev. Fluid Mech. 50 (2018), 4975.10.1146/annurev-fluid-122316-045034CrossRefGoogle Scholar
Porter, J., Salgado Sánchez, P., Shevtsova, V. & Yasnou, V. 2021 A review of fluid instabilities and control strategies with applications in microgravity. Math. Modelling Nat. Phenom. 16, 24.CrossRefGoogle Scholar
Rayleigh, 1882 Character of the Equilibrium of an Incompressible Heavy Fluid of Variable Density* . Proc. Lond. Math. Soc. s1-14 (1), 170177.10.1112/plms/s1-14.1.170CrossRefGoogle Scholar
Roberts, M.S. & Jacobs, J.W. 2016 The effects of forced small-wavelength, finite-bandwidth initial perturbations and miscibility on the turbulent Rayleigh–Taylor instability. J. Fluid Mech. 787, 5083.10.1017/jfm.2015.599CrossRefGoogle Scholar
Salgado Sánchez, P., Fernández, J., Tinao, I. & Porter, J. 2019 a Vibroequilibria in microgravity: comparison of experiments and theory. Phys. Rev. E 100 (6), 063103.10.1103/PhysRevE.100.063103CrossRefGoogle ScholarPubMed
Salgado Sánchez, P., Gaponenko, Y., Yasnou, V., Mialdun, A., Porter, J. & Shevtsova, V. 2020 Effect of initial interface orientation on patterns produced by vibrational forcing in microgravity. J. Fluid Mech. 884, A38.10.1017/jfm.2019.955CrossRefGoogle Scholar
Salgado Sánchez, P., Yasnou, V., Gaponenko, Y., Mialdun, A., Porter, J. & Shevtsova, V. 2019 b Interfacial phenomena in immiscible liquids subjected to vibrations in microgravity. J. Fluid Mech. 865, 850883.10.1017/jfm.2019.88CrossRefGoogle Scholar
Shevtsova, V., Gaponenko, Y., Yasnou, V., Mialdun, A. & Nepomnyashchy, A. 2015 Wall-generated pattern on a periodically excited miscible liquid/liquid interface. Langmuir 31 (20), 55505553.10.1021/acs.langmuir.5b01229CrossRefGoogle ScholarPubMed
Shevtsova, V., Gaponenko, Y.A., Yasnou, V., Mialdun, A. & Nepomnyashchy, A. 2016 Two-scale wave patterns on a periodically excited miscible liquid–liquid interface. J. Fluid Mech. 795, 409422.10.1017/jfm.2016.222CrossRefGoogle Scholar
Shyh, C.K. & Munson, B.R. 1986 Interfacial instability of an oscillating shear layer. ASME J. Fluids Eng. 108 (1), 8992.CrossRefGoogle Scholar
Talib, E., Jalikop, S.V. & Juel, A. 2007 The influence of viscosity on the frozen wave instability: theory and experiment. J. Fluid Mech. 584, 4568.Google Scholar
Talib, E. & Juel, A. 2007 Instability of a viscous interface under horizontal oscillation. Phys. Fluids 19 (9), 092102.10.1063/1.2762255CrossRefGoogle Scholar
Tavares, M., Josserand, C., Limare, A., Lopez-Herrera, J.M. & Popinet, S. 2024 A coupled VOF/embedded boundary method to model two-phase flows on arbitrary solid surfaces. Comput. Fluids 278, 106317.10.1016/j.compfluid.2024.106317CrossRefGoogle Scholar
Taylor, G.I. 1950 The instability of liquid surfaces when accelerated in a direction perpendicular to their planes. I. Proc. R. Soc. Lond. A Math. Phys. Sci. 201 (,1065), 192196.Google Scholar
Thévenin, S., Gréa, B.-J., Kluth, G. & Nadiga, B.T. 2025 Leveraging initial conditions memory for modelling Rayleigh–Taylor turbulence. J. Fluid Mech. 1009, A17.10.1017/jfm.2025.209CrossRefGoogle Scholar
Tryggvason, G., Scardovelli, R. & Zaleski, S. 2011 Direct Numerical Simulations of Gas–liquid Multiphase Flows. Cambridge University Press.Google Scholar
Wolf, G.H. 1970 Dynamic stabilization of the interchange instability of a liquid-gas interface. Phys. Rev. Lett. 24 (9), 444.CrossRefGoogle Scholar
Wolf, G.H. 1969 The dynamic stabilization of the Rayleigh–Taylor instability and the corresponding dynamic equilibrium. Z. Phys. A Hadrons Nuclei 227 (3), 291300.CrossRefGoogle Scholar
Wunenburger, R., Evesque, P., Chabot, C., Garrabos, Y., Fauve, S. & Beysens, D. 1999 Frozen wave induced by high frequency horizontal vibrations on a ${\textrm{CO}}_{2}$ liquid-gas interface near the critical point. Phys. Rev. E 59, 54405445.10.1103/PhysRevE.59.5440CrossRefGoogle Scholar
Yoshikawa, H.N. & Weisfred, J.E. 2011 Oscillatory Kelvin–Helmholtz instability. Part 1. A viscous theory. J. Fluid Mech. 675, 223248.10.1017/S0022112011000140CrossRefGoogle Scholar
Yoshikawa, H.N. & Wesfreid, J.E. 2011 Oscillatory Kelvin–Helmholtz instability. Part 2. An experiment in fluids with a large viscosity contrast. J. Fluid Mech. 675, 249267.10.1017/S0022112011000152CrossRefGoogle Scholar
Supplementary material: File

Gréa et al. supplementary movie 1

Visualization movie of experimental frozen interfacial waves under varying forcing frequencies and accelerations.
Download Gréa et al. supplementary movie 1(File)
File 13.4 MB
Supplementary material: File

Gréa et al. supplementary movie 2

Movie of a frozen-wave simulation illustrating the development of secondary Faraday instabilities.
Download Gréa et al. supplementary movie 2(File)
File 23.7 MB