Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-26T22:15:38.691Z Has data issue: false hasContentIssue false

A frictional–collisional model for bedload transport based on kinetic theory of granular flows: discrete and continuum approaches

Published online by Cambridge University Press:  01 June 2023

Rémi Chassagne*
Affiliation:
Université Grenoble Alpes, LEGI, CNRS UMR 5519, Grenoble, France
Cyrille Bonamy
Affiliation:
Université Grenoble Alpes, LEGI, CNRS UMR 5519, Grenoble, France
Julien Chauchat
Affiliation:
Université Grenoble Alpes, LEGI, CNRS UMR 5519, Grenoble, France
*
Email address for correspondence: remi.chassagne@univ-grenoble-alpes.fr

Abstract

In this work, the modelling of collisional bedload transport is investigated with a focus on the continuum modelling of the granular flow. For this purpose, a frictional–collisional approach, combining a Coulomb model with the kinetic theory of granular flows, is developed. The methodology is based on a comparison with coupled fluid–discrete simulations that the classical kinetic theory model fails to reproduce. This inaccuracy may be explained by the assumptions of negligible interparticle friction and the absence of a saltation model in the continuum approach. In order to provide guidelines for the modelling, the fluctuating energy balance is computed in the discrete simulations and systematically compared with the kinetic theory laws. Interparticle friction is shown to affect the radial distribution function and to increase the energy dissipation, in agreement with previous observations. In addition, a saltation regime is identified, leading to departure from the viscosity and pseudo-thermal diffusivity laws of the kinetic theory in the dilute regime. Based on these observations, modifications to account for interparticle friction are included in the two-fluid model, and the kinetic theory is coupled with a saltation model. The results show that for inelastic frictional particles, interparticle friction controls energy dissipation, and the macroscopic behaviour of the granular flow does not depend on the microscopic particle properties. The proposed model reproduces the $\mu (I)$ rheology in the dense regime of the granular flow. Finally, the model is evaluated with experiments, showing significant improvements concerning the granular flow modelling.

Type
JFM Papers
Copyright
© The Author(s), 2023. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ancey, C. 2020 Bedload transport: a walk between randomness and determinism. Part 1. The state of the art. J.Hydraul. Res. 58 (1), 117.CrossRefGoogle Scholar
Antony, S.J. & Kruyt, N.P. 2009 Role of interparticle friction and particle-scale elasticity in the shear-strength mechanism of three-dimensional granular media. Phys. Rev. E 79 (3), 031308.CrossRefGoogle ScholarPubMed
Babic, M. 1997 Average balance equations for granular materials. Intl J. Engng Sci. 35 (5), 523548.CrossRefGoogle Scholar
Berzi, D. 2014 Extended kinetic theory applied to dense, granular, simple shear flows. Acta Mechanica 225 (8), 21912198.CrossRefGoogle Scholar
Berzi, D. & Fraccarollo, L. 2013 Inclined, collisional sediment transport. Phys. Fluids 25 (10), 106601.CrossRefGoogle Scholar
Berzi, D. & Fraccarollo, L. 2015 Turbulence locality and granularlike fluid shear viscosity in collisional suspensions. Phys. Rev. Lett. 115 (19), 194501.CrossRefGoogle ScholarPubMed
Berzi, D. & Jenkins, J.T. 2011 Surface flows of inelastic spheres. Phys. Fluids 23 (1), 013303.CrossRefGoogle Scholar
Berzi, D. & Jenkins, J.T. 2015 Steady shearing flows of deformable, inelastic spheres. Soft Matt. 11 (24), 47994808.CrossRefGoogle ScholarPubMed
Berzi, D., Jenkins, J.T. & Richard, P. 2020 Extended kinetic theory for granular flow over and within an inclined erodible bed. J.Fluid Mech. 885, A27.CrossRefGoogle Scholar
Berzi, D. & Vescovi, D. 2015 Different singularities in the functions of extended kinetic theory at the origin of the yield stress in granular flows. Phys. Fluids 27 (1), 013302.CrossRefGoogle Scholar
Bonamy, C., et al. 2023 SedFoam/sedfoam: release 2212. Zenodo. Available at: https://doi.org/10.5281/zenodo.7944048.CrossRefGoogle Scholar
Bouzid, M., Trulsson, M., Claudin, P., Clément, E. & Andreotti, B. 2013 Nonlocal rheology of granular flows across yield conditions. Phys. Rev. Lett. 111 (23), 238301.CrossRefGoogle ScholarPubMed
Carnahan, N.F. & Starling, K.E. 1969 Equation of state for nonattracting rigid spheres. J.Chem. Phys. 51 (2), 635636.CrossRefGoogle Scholar
Chapman, S. & Cowling, T.G. 1970 The Mathematical Theory of Non-uniform Gases. Cambrige University Press.Google Scholar
Chassagne, R., Frey, P., Maurin, R. & Chauchat, J. 2020 a Mobility of bidisperse mixtures during bedload transport. Phys. Rev. Fluids 5 (11), 114307.CrossRefGoogle Scholar
Chassagne, R., Maurin, R., Chauchat, J., Gray, J.M.N.T. & Frey, P. 2020 b Discrete and continuum modelling of grain size segregation during bedload transport. J.Fluid Mech. 895, A30.CrossRefGoogle Scholar
Chauchat, J. 2018 A comprehensive two-phase flow model for unidirectional sheet-flows. J.Hydraul. Res. 56 (1), 1528.CrossRefGoogle Scholar
Chauchat, J., Cheng, Z., Nagel, T., Bonamy, C. & Hsu, T.-J. 2017 SedFoam-2.0: a 3-D two-phase flow numerical model for sediment transport. Geosci. Model Develop. 10 (12), 43674392.CrossRefGoogle Scholar
Chen, C.P. & Wood, P.E. 1985 A turbulence closure model for dilute gas–particle flows. Can. J. Chem. Engng 63 (3), 349360.CrossRefGoogle Scholar
Cheng, Z., Chauchat, J., Hsu, T.-J. & Calantoni, J. 2018 Eddy interaction model for turbulent suspension in Reynolds-averaged Euler–Lagrange simulations of steady sheet flow. Adv. Water Resour. 111, 435451.CrossRefGoogle Scholar
Chialvo, S., Sun, J. & Sundaresan, S. 2012 Bridging the rheology of granular flows in three regimes. Phys. Rev. E 85 (2), 021305.CrossRefGoogle ScholarPubMed
Chialvo, S. & Sundaresan, S. 2013 A modified kinetic theory for frictional granular flows in dense and dilute regimes. Phys. Fluids 25 (7), 070603.CrossRefGoogle Scholar
da Cruz, F., Emam, S., Prochnow, M., Roux, J.-N. & Chevoir, F. 2005 Rheophysics of dense granular materials: discrete simulation of plane shear flows. Phys. Rev. E 72 (2), 021309.CrossRefGoogle ScholarPubMed
Dai, B.B., Yang, J. & Zhou, C.Y. 2016 Observed effects of interparticle friction and particle size on shear behavior of granular materials. Intl J. Geomech. 16 (1), 04015011.CrossRefGoogle Scholar
Dalla Valle, J.M. 1943 Micromeritics: The Technology of Fine Particles. Pitman.Google Scholar
Danon, H., Wolfshtein, M. & Hetsroni, G. 1977 Numerical calculations of two-phase turbulent round jet. Intl J. Multiphase Flow 3 (3), 223234.CrossRefGoogle Scholar
Ding, J. & Gidaspow, D. 1990 A bubbling fluidization model using kinetic theory of granular flow. AIChE J. 36 (4), 523538.CrossRefGoogle Scholar
Dong, P. & Zhang, K. 1999 Two-phase flow modelling of sediment motions in oscillatory sheet flow. Coast. Engng 36 (2), 87109.CrossRefGoogle Scholar
Einstein, H.A 1937 Der Geschiebetrieb als Wahrscheinlichkeitsproblem (Bedload transport as a probability problem). ETHZ.Google Scholar
Finn, J.R. & Li, M. 2016 Regimes of sediment–turbulence interaction and guidelines for simulating the multiphase bottom boundary layer. Intl J. Multiphase Flow 85, 278283.CrossRefGoogle Scholar
Forterre, Y. & Pouliquen, O. 2008 Flows of dense granular media. Annu. Rev. Fluid Mech. 40 (1), 124.CrossRefGoogle Scholar
Fox, R.O. 2014 On multiphase turbulence models for collisional fluid–particle flows. J.Fluid Mech. 742, 368424.CrossRefGoogle Scholar
Frey, P. 2014 Particle velocity and concentration profiles in bedload experiments on a steep slope. Earth Surf. Process. Landf. 39 (5), 646655.CrossRefGoogle Scholar
Garzó, V. & Dufty, J.W. 1999 Dense fluid transport for inelastic hard spheres. Phys. Rev. E 59 (5 Pt B), 58955911.CrossRefGoogle ScholarPubMed
Garzó, V., Tenneti, S., Subramaniam, S. & Hrenya, C.M. 2012 Enskog kinetic theory for monodisperse gas–solid flows. J.Fluid Mech. 712, 129168.CrossRefGoogle Scholar
GDR MiDi 2004 On dense granular flows. Eur. Phys. J. E 14 (4), 341365.CrossRefGoogle Scholar
Goldhirsch, I. 2010 Stress, stress asymmetry and couple stress: from discrete particles to continuous fields. Granul. Matt. 12 (3), 239252.CrossRefGoogle Scholar
Gondret, P., Lance, M. & Petit, L. 2002 Bouncing motion of spherical particles in fluids. Phys. Fluids 14 (2), 643652.CrossRefGoogle Scholar
González, R.G. & Garzó, V. 2019 Transport coefficients for granular suspensions at moderate densities. J.Stat. Mech. 2019 (9), 093204.CrossRefGoogle Scholar
Gonzalez-Ondina, J.M., Fraccarollo, L. & Liu, P.L.-F. 2018 Two-level, two-phase model for intense, turbulent sediment transport. J.Fluid Mech. 839, 198238.CrossRefGoogle Scholar
Houssais, M., Ortiz, C.P., Durian, D.J. & Jerolmack, D.J. 2015 Onset of sediment transport is a continuous transition driven by fluid shear and granular creep. Nat. Commun. 6, 6527.CrossRefGoogle ScholarPubMed
Hsu, T.-J., Jenkins, J.T. & Liu, P.L.-F. 2004 On two-phase sediment transport: sheet flow of massive particles. Proc. R. Soc. Lond. A 460 (2048), 22232250.CrossRefGoogle Scholar
Hsu, T.-J. & Liu, P.L.-F. 2004 Toward modeling turbulent suspension of sand in the nearshore. J.Geophys. Res.: Oceans 109, C06018.CrossRefGoogle Scholar
Jackson, R. 1997 Locally averaged equations of motion for a mixture of identical spherical particles and a Newtonian fluid. Chem. Engng Sci. 52 (15), 24572469.CrossRefGoogle Scholar
Jackson, R. 2000 The Dynamics of Fluidized Particles. Cambridge University Press.Google Scholar
Jenkins, J.T. 2006 Dense shearing flows of inelastic disks. Phys. Fluids 18 (10), 103307.CrossRefGoogle Scholar
Jenkins, J.T. 2007 Dense inclined flows of inelastic spheres. Granul. Matt. 10 (1), 4752.CrossRefGoogle Scholar
Jenkins, J.T., Cantat, I. & Valance, A. 2010 Continuum model for steady, fully developed saltation above a horizontal particle bed. Phys. Rev. E 82 (2), 020301.CrossRefGoogle ScholarPubMed
Jenkins, J.T. & Hanes, D.M. 1998 Collisional sheet flows of sediment driven by a turbulent fluid. J.Fluid Mech. 370, 2952.CrossRefGoogle Scholar
Jenkins, J.T. & La Ragione, L. 2002 Micromechanical modeling of granular materials. In Modeling and Mechanics of Granular and Porous Materials (ed. G. Capriz, V.N. Ghionna & P. Giovine), pp. 45–61. Birkhäuser.CrossRefGoogle Scholar
Jenkins, J.T. & Savage, S.B. 1983 A theory for the rapid flow of identical, smooth, nearly elastic, spherical particles. J.Fluid Mech. 130, 187202.CrossRefGoogle Scholar
Jenkins, J.T. & Valance, A. 2018 Two-phase continuum theory for windblown sand. Phys. Rev. Fluids 3 (3), 034305.CrossRefGoogle Scholar
Jenkins, J.T. & Zhang, C. 2002 Kinetic theory for identical, frictional, nearly elastic spheres. Phys. Fluids 14 (3), 12281235.CrossRefGoogle Scholar
Johnson, P.C. & Jackson, R. 1987 Frictional–collisional constitutive relations for granular materials, with application to plane shearing. J.Fluid Mech. 176, 6793.CrossRefGoogle Scholar
Kamrin, K. & Henann, D.L. 2014 Nonlocal modeling of granular flows down inclines. Soft Matt. 11 (1), 179185.CrossRefGoogle Scholar
Kruyt, N.P. & Rothenburg, L. 2006 Shear strength, dilatancy, energy and dissipation in quasi-static deformation of granular materials. J.Stat. Mech. 2006 (07), P07021.CrossRefGoogle Scholar
Kumaran, V. 2006 The constitutive relation for the granular flow of rough particles, and its application to the flow down an inclined plane. J.Fluid Mech. 561, 142.CrossRefGoogle Scholar
Lee, C.-H., Low, Y.M. & Chiew, Y.-M. 2016 Multi-dimensional rheology-based two-phase model for sediment transport and applications to sheet flow and pipeline scour. Phys. Fluids 28 (5), 053305.CrossRefGoogle Scholar
Li, L. & Sawamoto, M. 1995 Multi-phase model on sediment transport in sheet-flow regime under oscillatory flow. Coast. Engng Japan 38 (2), 157178.CrossRefGoogle Scholar
Lun, C.K.K. & Savage, S.B. 1986 The effects of an impact velocity dependent coefficient of restitution on stresses developed by sheared granular materials. Acta Mechanica 63 (1), 1544.CrossRefGoogle Scholar
Lun, C.K.K., Savage, S.B., Jeffrey, D.J. & Chepurniy, N. 1984 Kinetic theories for granular flow: inelastic particles in Couette flow and slightly inelastic particles in a general flowfield. J.Fluid Mech. 140, 223256.CrossRefGoogle Scholar
Ma, D. & Ahmadi, G. 1986 An equation of state for dense rigid sphere gases. J.Chem. Phys. 84 (6), 34493450.CrossRefGoogle Scholar
Maeda, K., Hirabayashi, H. & Ohmura, A. 2006 Micromechanical influence of grain properties on deformation – failure behaviours of granular media by DEM. In Geomechanics and Geotechnics of Particulate Media. CRC.Google Scholar
Mathieu, A., Chauchat, J., Bonamy, C., Balarac, G. & Hsu, T.-J. 2021 A finite-size correction model for two-fluid large-eddy simulation of particle-laden boundary layer flow. J.Fluid Mech. 913, A26.CrossRefGoogle Scholar
Maurin, R. 2015 Investigation of granular behavior in bedload transport using a Eulerian–Lagragian model. PhD thesis, Université Grenoble Alpes.Google Scholar
Maurin, R., Chauchat, J., Chareyre, B. & Frey, P. 2015 A minimal coupled fluid–discrete element model for bedload transport. Phys. Fluids 27 (11), 113302.CrossRefGoogle Scholar
Maurin, R., Chauchat, J. & Frey, P. 2016 Dense granular flow rheology in turbulent bedload transport. J.Fluid Mech. 804, 490512.CrossRefGoogle Scholar
Ni, W.-J. & Capart, H. 2018 Stresses and drag in turbulent bed load from refractive index-matched experiments. Geophys. Res. Lett. 45 (14), 70007009.CrossRefGoogle Scholar
Oger, L., Savage, S.B., Corriveau, D. & Sayed, M. 1998 Yield and deformation of an assembly of disks subjected to a deviatoric stress loading. Mech. Mater. 27 (4), 189210.CrossRefGoogle Scholar
Pähtz, T., Durán, O., Ho, T.-D., Valance, A. & Kok, J.F. 2015 The fluctuation energy balance in non-suspended fluid-mediated particle transport. Phys. Fluids 27 (1), 013303.CrossRefGoogle Scholar
Pasini, J.M. & Jenkins, J.T. 2005 Aeolian transport with collisional suspension. Phil. Trans. R. Soc. Lond. A 363 (1832), 16251646.Google ScholarPubMed
Peña, A.A., Lizcano, A., Alonso-Marroquin, F. & Herrmann, H.J. 2008 Biaxial test simulations using a packing of polygonal particles. Intl J. Numer. Anal. Meth. Geomech. 32 (2), 143160.CrossRefGoogle Scholar
Pouliquen, O., Cassar, C., Jop, P., Forterre, Y. & Nicolas, M. 2006 Flow of dense granular material: towards simple constitutive laws. J.Stat. Mech. 2006 (07), P07020.CrossRefGoogle Scholar
Prandtl, L. 1926 Bericht über neuere Turbulenzforschung. Hydraulische Probleme. Vorträge Hydrauliktagung Göttingen 5, 113.Google Scholar
Rao, K.K. & Nott, P.R. 2008 An Introduction to Granular Flow. Cambridge University Press.CrossRefGoogle Scholar
Revil-Baudard, T. & Chauchat, J. 2013 A two-phase model for sheet flow regime based on dense granular flow rheology. J.Geophys. Res.: Oceans 118 (2), 619634.CrossRefGoogle Scholar
Rouse, H. 1937 Modern conceptions of the mechanics of fluid turbulence. Trans. Am. Soc. Civil Engrs 102 (1), 463505.CrossRefGoogle Scholar
Rousseau, H., Chassagne, R., Chauchat, J., Maurin, R. & Frey, P. 2021 Bridging the gap between particle-scale forces and continuum modelling of size segregation: application to bedload transport. J.Fluid Mech. 916, A26.CrossRefGoogle Scholar
Roux, J.N. & Combe, G. 2002 Quasistatic rheology and the origins of strain. C. R. Phys. 3 (2), 131140.CrossRefGoogle Scholar
Sangani, A.S., Mo, G., Tsao, H.-K. & Koch, D.L. 1996 Simple shear flows of dense gas–solid suspensions at finite Stokes numbers. J.Fluid Mech. 313, 309341.CrossRefGoogle Scholar
Savage, S.B. & Jeffrey, D.J. 1981 The stress tensor in a granular flow at high shear rates. J.Fluid Mech. 110, 255272.CrossRefGoogle Scholar
Schwager, T. & Poschel, T. 2007 Coefficient of restitution and linear-dashpot model revisited. Granul. Matt. 9 (6), 465469.CrossRefGoogle Scholar
Smilauer, V., et al. 2015 Yade Documentation 2nd Ed. The Yade Project. Zenodo.Google Scholar
Suiker, A.S.J. & Fleck, N.A. 2004 Frictional collapse of granular assemblies. J.Appl. Mech. 71 (3), 350358.CrossRefGoogle Scholar
Thornton, C. 2000 Numerical simulations of deviatoric shear deformation of granular media. Géotechnique 50 (1), 4353.CrossRefGoogle Scholar
Torquato, S. 1995 Nearest-neighbor statistics for packings of hard spheres and disks. Phys. Rev. E 51 (4), 31703182.CrossRefGoogle ScholarPubMed
Tsao, H.-K. & Koch, D.L. 1995 Simple shear flows of dilute gas–solid suspensions. J.Fluid Mech. 296, 211245.CrossRefGoogle Scholar
Vescovi, D., Berzi, D., Richard, P. & Brodu, N. 2014 Plane shear flows of frictionless spheres: kinetic theory and 3D soft-sphere discrete element method simulations. Phys. Fluids 26 (5), 053305.CrossRefGoogle Scholar
Yang, F.-L. & Hunt, M.L. 2006 Dynamics of particle–particle collisions in a viscous liquid. Phys. Fluids 18 (12), 121506.CrossRefGoogle Scholar
Yang, Z.X., Yang, J. & Wang, L.Z. 2012 On the influence of inter-particle friction and dilatancy in granular materials: a numerical analysis. Granul. Matt. 14 (3), 433447.CrossRefGoogle Scholar
Zhang, Q., Deal, E., Perron, J.T., Venditti, J., Benavides, S.J., Rushlow, M. & Kamrin, K. 2022 Fluid-driven transport of round sediment particles: from discrete simulations to continuum modeling. J.Geophys. Res.: Earth 127 (7), e2021JF006504.Google Scholar