Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-26T23:03:58.018Z Has data issue: false hasContentIssue false

Frictional boundary condition for lattice Boltzmann modelling of dense granular flows

Published online by Cambridge University Press:  17 October 2023

G.C. Yang
Affiliation:
School of Aeronautics and Astronautics, Sun Yat-sen University, Guangzhou 510275, PR China
Y.J. Huang
Affiliation:
School of Aeronautics and Astronautics, Sun Yat-sen University, Guangzhou 510275, PR China
Y. Lu*
Affiliation:
Department of Civil Engineering, Hong Kong Chu Hai College, Hong Kong, PR China Department of Civil Engineering, The University of Hong Kong, Haking Wong Building, Pokfulam Road, Hong Kong, PR China
C.Y. Kwok
Affiliation:
Department of Civil Engineering, The University of Hong Kong, Haking Wong Building, Pokfulam Road, Hong Kong, PR China
Y.D. Sobral
Affiliation:
Departamento de Matemática, Universidade de Brasília, Campus Universitário Darcy Ribeiro, 70910-900 Brasília DF, Brazil
Q.H. Yao
Affiliation:
School of Aeronautics and Astronautics, Sun Yat-sen University, Guangzhou 510275, PR China
*
Email address for correspondence: helenlu@chuhai.edu.hk

Abstract

Hydrodynamic approaches that treat granular materials as a continuum via the homogenization of discrete flow properties have become viable options for efficient predictions of bulk flow behaviours. However, simplified boundary conditions in computational fluid dynamics are often adopted, which have difficulty in describing the complex stick–slip phenomenon at the boundaries. This paper extends the lattice Boltzmann method for granular flow simulations by incorporating a novel frictional boundary condition. The wall slip velocity is first calculated based on the shear rate limited by the Coulomb friction, followed by the reconstruction of unknown density distribution functions through a modified bounce-back scheme. Validation is performed against a unique plane Couette flow configuration, and the analytical solutions for the flow velocity profile and the wall slip velocity, as functions of the friction coefficient, are reproduced by the numerical model. The transition between no-slip and partial-slip regimes is captured well, but the convergence rate drops from second order to first order when slip occurs. The rheological parameters and the basal friction coefficient are calibrated further against the discrete element simulation of a square granular column collapsing over a horizontal bottom plane. It is found that the calibrated continuum model can predict other granular column collapses with different initial aspect ratios and slope inclination angles, including the basal slip and the complex internal flow structures, without any further adjustments to the model parameters. This highlights the generalization ability of the numerical model, which has a wide range of application in granular flow predictions and controls.

Type
JFM Papers
Copyright
© The Author(s), 2023. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aharonov, E. & Rothman, D.H. 1993 Non-Newtonian flow (through porous media): a lattice-Boltzmann method. Geophys. Res. Lett. 20 (8), 679682.CrossRefGoogle Scholar
Artoni, R. & Richard, P. 2015 Effective wall friction in wall-bounded 3D dense granular flows. Phys. Rev. Lett. 115 (15), 158001.CrossRefGoogle ScholarPubMed
Artoni, R. & Santomaso, A. 2014 Effective wall slip in chutes and channels: experiments and discrete element simulations. Granul. Matt. 16 (3), 377382.CrossRefGoogle Scholar
Artoni, R., Santomaso, A. & Canu, P. 2009 Effective boundary conditions for dense granular flows. Phys. Rev. E 79 (3), 031304.CrossRefGoogle ScholarPubMed
Artoni, R., Santomaso, A.C., Go’, M. & Canu, P. 2012 Scaling laws for the slip velocity in dense granular flows. Phys. Rev. Lett. 108 (23), 238002.CrossRefGoogle ScholarPubMed
Artoni, R., Soligo, A., Paul, J.-M. & Richard, P. 2018 Shear localization and wall friction in confined dense granular flows. J. Fluid Mech. 849, 395418.CrossRefGoogle Scholar
Balmforth, N.J. & Kerswell, R.R. 2005 Granular collapse in two dimensions. J. Fluid Mech. 538, 399428.CrossRefGoogle Scholar
Campbell, C.S. 1990 Rapid granular flows. Annu. Rev. Fluid Mech. 22 (1), 5790.CrossRefGoogle Scholar
Chai, Z., Guo, Z., Zheng, L. & Shi, B. 2008 Lattice Boltzmann simulation of surface roughness effect on gaseous flow in a microchannel. J. Appl. Phys. 104 (1), 014902.CrossRefGoogle Scholar
Chauchat, J. & Médale, M. 2014 A three-dimensional numerical model for dense granular flows based on the $\mu (I)$ rheology. J. Comput. Phys. 256, 696712.CrossRefGoogle Scholar
Chen, S. & Doolen, G.D. 1998 Lattice Boltzmann method for fluid flows. Annu. Rev. Fluid Mech. 30 (1), 329364.CrossRefGoogle Scholar
Chen, S., Martínez, D. & Mei, R. 1996 On boundary conditions in lattice Boltzmann methods. Phys. Fluids 8 (9), 25272536.CrossRefGoogle Scholar
da Cruz, F., Emam, S., Prochnow, M., Roux, J.-N. & Chevoir, F. 2005 Rheophysics of dense granular materials: discrete simulation of plane shear flows. Phys. Rev. E 72 (2), 021309.CrossRefGoogle ScholarPubMed
Cundall, P.A. & Strack, O.D.L. 1979 A discrete numerical model for granular assemblies. Géotechnique 29 (1), 4765.CrossRefGoogle Scholar
Domnik, B. & Pudasaini, S.P. 2012 Full two-dimensional rapid chute flows of simple viscoplastic granular materials with a pressure-dependent dynamic slip-velocity and their numerical simulations. J. Non-Newtonian Fluid Mech. 173–174, 7286.CrossRefGoogle Scholar
Dong, B., Yan, Y.Y. & Li, W.Z. 2011 LBM simulation of viscous fingering phenomenon in immiscible displacement of two fluids in porous media. Transp. Porous Med. 88 (2), 293314.CrossRefGoogle Scholar
Franci, A. & Cremonesi, M. 2019 3D regularized $\mu (I)$-rheology for granular flows simulation. J. Comput. Phys. 378, 257277.CrossRefGoogle Scholar
Goldhirsch, I. 2003 Rapid granular flows. Annu. Rev. Fluid Mech. 35 (1), 267293.CrossRefGoogle Scholar
Gollin, D., Brevis, W., Bowman, E.T. & Shepley, P. 2017 Performance of PIV and PTV for granular flow measurements. Granul. Matt. 19 (3), 42.CrossRefGoogle Scholar
He, X. & Luo, L.-S. 1997 Lattice Boltzmann model for the incompressible Navier–Stokes equation. J. Stat. Phys. 88 (3), 927944.CrossRefGoogle Scholar
He, X., Zou, Q., Luo, L.-S. & Dembo, M. 1997 Analytic solutions of simple flows and analysis of nonslip boundary conditions for the lattice Boltzmann BGK model. J. Stat. Phys. 87 (1), 115136.CrossRefGoogle Scholar
Jing, L., Kwok, C.Y., Leung, Y.F. & Sobral, Y.D. 2016 Characterization of base roughness for granular chute flows. Phys. Rev. E 94 (5), 052901.CrossRefGoogle ScholarPubMed
Jing, L., Yang, G.C., Kwok, C.Y. & Sobral, Y.D. 2018 Dynamics and scaling laws of underwater granular collapse with varying aspect ratios. Phys. Rev. E 98 (4), 042901.CrossRefGoogle Scholar
Jing, L., Yang, G.C., Kwok, C.Y. & Sobral, Y.D. 2019 Flow regimes and dynamic similarity of immersed granular collapse: a CFD-DEM investigation. Powder Technol. 345, 532543.CrossRefGoogle Scholar
Johnson, P.C., Nott, P. & Jackson, R. 1990 Frictional–collisional equations of motion for participate flows and their application to chutes. J. Fluid Mech. 210, 501535.CrossRefGoogle Scholar
Jop, P., Forterre, Y. & Pouliquen, O. 2006 A constitutive law for dense granular flows. Nature 441 (7094), 727730.CrossRefGoogle ScholarPubMed
Körner, C., Thies, M., Hofmann, T., Thürey, N. & Rüde, U. 2005 Lattice Boltzmann model for free surface flow for modeling foaming. J. Stat. Phys. 121 (1), 179196.CrossRefGoogle Scholar
Krüger, T., Varnik, F. & Raabe, D. 2010 Second-order convergence of the deviatoric stress tensor in the standard Bhatnagar–Gross–Krook lattice Boltzmann method. Phys. Rev. E 82 (2), 025701.CrossRefGoogle ScholarPubMed
Lacaze, L. & Kerswell, R.R. 2009 Axisymmetric granular collapse: a transient 3D flow test of viscoplasticity. Phys. Rev. Lett. 102 (10), 108305.CrossRefGoogle ScholarPubMed
Lacaze, L., Phillips, J.C. & Kerswell, R.R. 2008 Planar collapse of a granular column: experiments and discrete element simulations. Phys. Fluids 20 (6), 063302.CrossRefGoogle Scholar
Ladd, A.J.C. 1994 Numerical simulations of particulate suspensions via a discretized Boltzmann equation. Part 1. Theoretical foundation. J. Fluid Mech. 271, 285309.CrossRefGoogle Scholar
Lagrée, P.Y., Staron, L. & Popinet, S. 2011 The granular column collapse as a continuum: validity of a two-dimensional Navier–Stokes model with a $\mu (I)$-rheology. J. Fluid Mech. 686, 378408.CrossRefGoogle Scholar
Lajeunesse, E., Monnier, J.B. & Homsy, G.M. 2005 Granular slumping on a horizontal surface. Phys. Fluids 17 (10), 103302.CrossRefGoogle Scholar
Liu, X.Y., Specht, E. & Mellmann, J. 2005 Experimental study of the lower and upper angles of repose of granular materials in rotating drums. Powder Technol. 154 (2), 125131.CrossRefGoogle Scholar
Liu, Y., Balmforth, N.J., Hormozi, S. & Hewitt, D.R. 2016 Two-dimensional viscoplastic dambreaks. J. Non-Newtonian Fluid Mech. 238, 6579.CrossRefGoogle Scholar
Lube, G., Huppert, H.E., Sparks, R.S.J. & Freundt, A. 2005 Collapses of two-dimensional granular columns. Phys. Rev. E 72 (4), 041301.CrossRefGoogle ScholarPubMed
Mellmann, J. 2001 The transverse motion of solids in rotating cylinders – forms of motion and transition behavior. Powder Technol. 118 (3), 251270.CrossRefGoogle Scholar
Midi, G.D.R. 2004 On dense granular flows. Eur. Phys. J. E 14 (4), 341365.CrossRefGoogle Scholar
Nasuno, S., Kudrolli, A., Bak, A. & Gollub, J.P. 1998 Time-resolved studies of stick–slip friction in sheared granular layers. Phys. Rev. E 58 (2), 21612171.CrossRefGoogle Scholar
Philippou, M., Damianou, Y., Miscouridou, X. & Georgiou, G.C. 2017 Cessation of Newtonian circular and plane Couette flows with wall slip and non-zero slip yield stress. Meccanica 52 (9), 20812099.CrossRefGoogle Scholar
Pouliquen, O. 1999 Scaling laws in granular flows down rough inclined planes. Phys. Fluids 11 (3), 542548.CrossRefGoogle Scholar
Qian, Y.H., D'Humières, D. & Lallemand, P. 1992 Lattice BGK models for Navier–Stokes equation. Europhys. Lett. 17 (6), 479484.CrossRefGoogle Scholar
Reis, T. 2020 On the lattice Boltzmann deviatoric stress: analysis, boundary conditions, and optimal relaxation times. SIAM J. Sci. Comput. 42 (2), B397B424.CrossRefGoogle Scholar
Ristow, G.H. 1996 Dynamics of granular materials in a rotating drum. Europhys. Lett. (EPL) 34 (4), 263268.CrossRefGoogle Scholar
Roche, O., van den Wildenberg, S., Valance, A., Delannay, R., Mangeney, A., Corna, L. & Latchimy, T. 2021 Experimental assessment of the effective friction at the base of granular chute flows on a smooth incline. Phys. Rev. E 103 (4), 042905.CrossRefGoogle ScholarPubMed
Savage, S.B. & Lun, C.K.K. 1988 Particle size segregation in inclined chute flow of dry cohesionless granular solids. J. Fluid Mech. 189, 311335.CrossRefGoogle Scholar
Staron, L. & Hinch, E.J. 2005 Study of the collapse of granular columns using two-dimensional discrete-grain simulation. J. Fluid Mech. 545, 127.CrossRefGoogle Scholar
Staron, L. & Hinch, E.J. 2006 The spreading of a granular mass: role of grain properties and initial conditions. Granul. Matt. 9 (3), 205217.CrossRefGoogle Scholar
Succi, S. 2002 Mesoscopic modeling of slip motion at fluid–solid interfaces with heterogeneous catalysis. Phys. Rev. Lett. 89 (6), 064502.CrossRefGoogle ScholarPubMed
Švec, O. & Skoček, J. 2013 Simple Navier's slip boundary condition for the non-Newtonian lattice Boltzmann fluid dynamics solver. J. Non-Newtonian Fluid Mech. 199, 6169.CrossRefGoogle Scholar
Thürey, N. & Rüde, U. 2009 Stable free surface flows with the lattice Boltzmann method on adaptively coarsened grids. Comput. Vis. Sci. 12 (5), 247263.CrossRefGoogle Scholar
Utili, S., Zhao, T. & Houlsby, G.T. 2015 3D DEM investigation of granular column collapse: evaluation of debris motion and its destructive power. Engng Geol. 186, 316.CrossRefGoogle Scholar
Wang, K., Chai, Z., Hou, G., Chen, W. & Xu, S. 2018 Slip boundary condition for lattice Boltzmann modeling of liquid flows. Comput. Fluids 161, 6073.CrossRefGoogle Scholar
Wu, Y.-H., Hill, J.M. & Yu, A. 2007 A finite element method for granular flow through a frictional boundary. Commun. Nonlinear Sci. Numer. Simul. 12 (4), 486495.CrossRefGoogle Scholar
Yang, F.-L. & Huang, Y.-T. 2016 New aspects for friction coefficients of finite granular avalanche down a flat narrow reservoir. Granul. Matt. 18 (4), 77.CrossRefGoogle Scholar
Yang, G.C., Jing, L., Kwok, C.Y. & Sobral, Y.D. 2019 A comprehensive parametric study of LBM-DEM for immersed granular flows. Comput. Geotech. 114, 103100.CrossRefGoogle Scholar
Yang, G.C., Jing, L., Kwok, C.Y. & Sobral, Y.D. 2020 Pore-scale simulation of immersed granular collapse: implications to submarine landslides. J. Geophys. Res. Earth Surf. 125 (1), e2019JF005044.CrossRefGoogle Scholar
Yang, G.C., Jing, L., Kwok, C.Y. & Sobral, Y.D. 2021 Size effects in underwater granular collapses: experiments and coupled lattice Boltzmann and discrete element method simulations. Phys. Rev. Fluids 6 (11), 114302.CrossRefGoogle Scholar
Yang, G.C., Yang, S.C., Jing, L., Kwok, C.Y. & Sobral, Y.D. 2023 Efficient lattice Boltzmann simulation of free-surface granular flows with $\mu (I)$-rheology. J. Comput. Phys. 479, 111956.CrossRefGoogle Scholar
Zenit, R. 2005 Computer simulations of the collapse of a granular column. Phys. Fluids 17 (3), 031703.CrossRefGoogle Scholar
Zou, Q. & He, X. 1997 On pressure and velocity boundary conditions for the lattice Boltzmann BGK model. Phys. Fluids 9 (6), 15911598.CrossRefGoogle Scholar

Yang et al. Supplementary Movie

Comparison of granular column collapse simulations using the discrete element and the lattice Boltzmann methods.

Download Yang et al. Supplementary Movie(Video)
Video 5.5 MB