Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-11T12:38:48.121Z Has data issue: false hasContentIssue false

Fluid dynamics in intracranial aneurysms treated with flow-diverting stents: effect of multiple geometrical parameters

Published online by Cambridge University Press:  23 October 2023

Fanette Chassagne*
Affiliation:
SAINBIOSE INSERM U1059, Mines Saint-Étienne, F-42023 Saint-Étienne, France
Michael C. Barbour
Affiliation:
Department of Mechanical Engineering, University of Washington, Seattle, WA 98105, USA
Michael R. Levitt
Affiliation:
Department of Mechanical Engineering, University of Washington, Seattle, WA 98105, USA Department of Neurological Surgery, University of Washington, Seattle, WA 98107, USA Department of Radiology, University of Washington, Seattle, WA 98107, USA
Alberto Aliseda
Affiliation:
Department of Mechanical Engineering, University of Washington, Seattle, WA 98105, USA Department of Neurological Surgery, University of Washington, Seattle, WA 98107, USA
*
Email address for correspondence: fanette.chassagne@emse.fr

Abstract

Characterizing the haemodynamics in intracranial aneurysms is of high interest as it impacts aneurysm growth, rupture and treatment, especially with flow-diverting stents (FDS). Flow in these geometries is known to depend on the Dean, Reynolds and Womersley numbers, $De$, $Re$, $Wo$, but is also influenced by geometrical parameters such as the sac shape or the size of the opening. Via particle image velocimetry, this parametric study aimed at evaluating the combined effects of $Re$, $De$, $Wo$ and the geometry of the aneurysmal sac on the haemodynamics before and after treatment with FDS. Eight ellipsoidal idealized aneurysm models were created with two curvatures of the parent vessel, two aspect ratios of the sac and two neck sizes. Before treatment, a single counter-rotating vortex, whose strength increases with $Re$ and $De$, as well as with the neck size and the aspect ratio, was observed in the sac for all but one geometry. After treatment with FDS, four different flow topologies were observed, depending on the geometry: no separation, separation for part of the cycle, two opposing vortices or a single counter-rotating vortex. A linear model with interaction revealed the predominant effect of $De$ and the curvature of the parent vessel on the haemodynamics before and after treatment. This work once more demonstrated the primary role of haemodynamics in the treatment of intracranial aneurysms with FDS. Future work will consider the complexity of patient-specific geometries, and their effects on both the haemodynamics in the sac and the porosity of the FDS.

Type
JFM Papers
Copyright
© The Author(s), 2023. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abdehkakha, A., Hammond, A.L., Patel, T.R., Siddiqui, A.H., Dargush, G.F. & Meng, H. 2021 Cerebral aneurysm flow diverter modeled as a thin inhomogeneous porous medium in hemodynamic simulations. Comput. Biol. Med. 139, 104988.CrossRefGoogle ScholarPubMed
Adeeb, N., et al. 2017 Predictors of incomplete occlusion following pipeline embolization of intracranial aneurysms: is it less effective in older patients? Am. J. Neuroradiol. 38 (12), 22952300.CrossRefGoogle ScholarPubMed
Aenis, M., Stancampiano, A.P., Wakhloo, A.K. & Lieber, B.B. 1997 Modeling of flow in a straight stented and nonstented side wall aneurysm model. Trans. ASME J. Biomech. Engng 119 (2), 206212.CrossRefGoogle Scholar
Ajiboye, N., Chalouhi, N., Starke, R.M., Zanaty, M. & Bell, R. 2015 Unruptured cerebral aneurysms: evaluation and management. Sci. World J. 2015, 110.CrossRefGoogle ScholarPubMed
Altindağ, B., Bahadir Olcay, A., Furkan Tercanli, M., Bilgin, C. & Hakyemez, B. 2023 Determining flow stasis zones in the intracranial aneurysms and the relation between these zones and aneurysms’ aspect ratios after flow diversions. Intl Neuroradiol. doi:10.1177/15910199231162878.CrossRefGoogle ScholarPubMed
Asgharzadeh, H. & Borazjani, I. 2016 Effects of Reynolds and Womersley numbers on the hemodynamics of intracranial aneurysms. Comput. Math. Meth. Med. 2016, 116.CrossRefGoogle ScholarPubMed
Asgharzadeh, H. & Borazjani, I. 2019 A non-dimensional parameter for classification of the flow in intracranial aneurysms. I. Simplified geometries. Phys. Fluids 31 (3), 031904.CrossRefGoogle ScholarPubMed
Augsburger, L., Farhat, M., Reymond, P., Fonck, E., Kulcsar, Z., Stergiopulos, N. & Rüfenacht, D.A. 2009 Effect of flow diverter porosity on intraaneurysmal blood flow. Clin. Neuroradiol. 19 (3), 204214.CrossRefGoogle ScholarPubMed
Babiker, M.H., Gonzalez, L.F., Ryan, J., Albuquerque, F., Collins, D., Elvikis, A. & Frakes, D.H. 2012 Influence of stent configuration on cerebral aneurysm fluid dynamics. J. Biomech. 45 (3), 440447.CrossRefGoogle ScholarPubMed
Barbour, M.C., Chassagne, F., Chivukula, V.K., Machicoane, N., Kim, L.J., Levitt, M.R. & Aliseda, A. 2021 The effect of Dean, Reynolds and Womersley numbers on the flow in a spherical cavity on a curved round pipe. Part 2. The haemodynamics of intracranial aneurysms treated with flow-diverting stents. J. Fluid Mech. 915, A124.CrossRefGoogle Scholar
Bender, M.T., Colby, G.P., Lin, L.-M., Jiang, B., Westbroek, E.M., Xu, R., Campos, J.K., Huang, J., Tamargo, R.J. & Coon, A.L. 2018 Predictors of cerebral aneurysm persistence and occlusion after flow diversion: a single-institution series of 445 cases with angiographic follow-up. J. Neurosurg. 130 (1), 259267.Google ScholarPubMed
Bhogal, P., Ganslandt, O., Bäzner, H., Henkes, H. & Pérez, M.A. 2017 The fate of side branches covered by flow diverters–results from 140 patients. World Neurosurg. 103, 789798.CrossRefGoogle ScholarPubMed
Bouillot, P., Brina, O., Ouared, R., Lovblad, K.-O., Farhat, M. & Pereira, V.M. 2014 Particle imaging velocimetry evaluation of intracranial stents in sidewall aneurysm: hemodynamic transition related to the stent design. PLoS ONE 9 (12), e113762.CrossRefGoogle Scholar
Bouillot, P., Brina, O., Ouared, R., Lovblad, K.-O., Farhat, M. & Pereira, V.M. 2015 Hemodynamic transition driven by stent porosity in sidewall aneurysms. J. Biomech. 48 (7), 13001309.CrossRefGoogle ScholarPubMed
Bouillot, P., Brina, O., Ouared, R., Yilmaz, H., Lovblad, K.-O., Farhat, M. & Mendes Pereira, V. 2016 Computational fluid dynamics with stents: quantitative comparison with particle image velocimetry for three commercial off the shelf intracranial stents. J. Neurointerv. Surg. 8 (3), 309315.CrossRefGoogle ScholarPubMed
Brinjikji, W., Cloft, H.J., Fiorella, D., Lanzino, G. & Kallmes, D.F. 2013 Estimating the proportion of intracranial aneurysms likely to be amenable to treatment with the pipeline embolization device. J. Neurointerv. Surg. 5 (1), 4548.CrossRefGoogle ScholarPubMed
Burggraf, O.R. 1966 Analytical and numerical studies of the structure of steady separated flows. J. Fluid Mech. 24 (1), 113151.CrossRefGoogle Scholar
Cantón, G., Levy, D.I., , Lasheras, J.C. & Nelson, P.K. 2005 Flow changes caused by the sequential placement of stents across the neck of sidewall cerebral aneurysms. J. Neurosurg. 103 (5), 891902.CrossRefGoogle ScholarPubMed
Cebral, J.R., Mut, F., Raschi, M., Hodis, S., Ding, Y.-H., Erickson, B.J., Kadirvel, R. & Kallmes, D.F. 2014 Analysis of hemodynamics and aneurysm occlusion after flow-diverting treatment in rabbit models. Am. J. Neuroradiol. 35 (8), 15671573.CrossRefGoogle ScholarPubMed
Chassagne, F., Barbour, M.C., Chivukula, V.K., Machicoane, N., Kim, L.J., Levitt, M.R. & Aliseda, A. 2021 The effect of Dean, Reynolds and Womersley numbers on the flow in a spherical cavity on a curved round pipe. Part 1. Fluid mechanics in the cavity as a canonical flow representing intracranial aneurysms. J. Fluid Mech. 915, A123.CrossRefGoogle Scholar
Chen, J., Zhang, Y., Tian, Z., Li, W., Zhang, Q., Zhang, Y., Liu, J. & Yang, X. 2019 Relationship between haemodynamic changes and outcomes of intracranial aneurysms after implantation of the pipeline embolisation device: a single centre study. Interv. Neuroradiol. 25 (6), 671680.CrossRefGoogle ScholarPubMed
Chivukula, V.K., et al. 2019 Reconstructing patient-specific cerebral aneurysm vasculature for in vitro investigations and treatment efficacy assessments. J. Clin. Neurosci. 61, 153159.CrossRefGoogle ScholarPubMed
Chong, W., Zhang, Y., Qian, Y., Lai, L., Parker, G. & Mitchell, K. 2014 Computational hemodynamics analysis of intracranial aneurysms treated with flow diverters: correlation with clinical outcomes. Am. J. Neuroradiol. 35 (1), 136142.CrossRefGoogle ScholarPubMed
Chung, B., Mut, F., Kadirvel, R., Lingineni, R., Kallmes, D.F. & Cebral, J.R. 2015 Hemodynamic analysis of fast and slow aneurysm occlusions by flow diversion in rabbits. J. Neurointerv. Surg. 7 (12), 931935.CrossRefGoogle ScholarPubMed
Clauser, J., Knieps, M.S., Büsen, M., Ding, A., Schmitz-Rode, T., Steinseifer, U., Arens, J. & Cattaneo, G. 2018 A novel plasma-based fluid for particle image velocimetry (PIV): in-vitro feasibility study of flow diverter effects in aneurysm model. Ann. Biomed. Engng 46 (6), 841848.CrossRefGoogle ScholarPubMed
Collins, W.M. & Dennis, S.C.R. 1975 The steady motion of a viscous fluid in a curved tube. Q. J. Mech. Appl. Maths 28 (2), 133156.CrossRefGoogle Scholar
Daou, B., Atallah, E., Chalouhi, N., Starke, R.M., Oliver, J., Montano, M., Jabbour, P., Rosenwasser, R.H. & Tjoumakaris, S.I. 2019 Aneurysms with persistent filling after failed treatment with the Pipeline embolization device. J. Neurosurg. 130 (4), 13761382.CrossRefGoogle Scholar
Dean, W.R. 1927 Note on the motion of fluid in a curved pipe. Lond. Edinb. Dublin Phil. Mag. J. Sci. 4 (20), 208223.CrossRefGoogle Scholar
Dean, W.R. 1928 The streamline motion of a fluid in a curved pipe. Philos. Mag. 30, 673693.CrossRefGoogle Scholar
Dorn, F., Niedermeyer, F., Balasso, A., Liepsch, D. & Liebig, T. 2011 The effect of stents on intra-aneurysmal hemodynamics: in vitro evaluation of a pulsatile sidewall aneurysm using laser Doppler anemometry. Neuroradiology 53 (4), 267272.CrossRefGoogle ScholarPubMed
Epshtein, M. & Korin, N. 2018 Mapping the transport kinetics of molecules and particles in idealized intracranial side aneurysms. Sci. Rep. 8 (1), 8528.CrossRefGoogle ScholarPubMed
Eustice, J. 1910 Flow of water in curved pipes. Proc. R. Soc. A: Math. Phys. Engng Sci. 84 (568), 107118.Google Scholar
Eustice, J. 1911 Experiments on stream-line motion in curved pipes. Proc. R. Soc. A: Math. Phys. Engng Sci. 85 (576), 119131.Google Scholar
Faure, T.M., Adrianos, P., Lusseyran, F. & Pastur, L. 2007 Visualizations of the flow inside an open cavity at medium range Reynolds numbers. Exp. Fluids 42 (2), 169184.CrossRefGoogle Scholar
Ford, M.D., Alperin, N., Lee, S.H., Holdsworth, D.W. & Steinman, D.A. 2005 Characterization of volumetric flow rate waveforms in the normal internal carotid and vertebral arteries. Physiol. Meas. 26 (4), 477488.CrossRefGoogle ScholarPubMed
Frauziols, F., Chassagne, F., Badel, P., Navarro, L., Molimard, J., Curt, N. & Avril, S. 2016 In vivo identification of the passive mechanical properties of deep soft tissues in the human leg: in vivo identification of passive mechanical properties of leg soft tissues. Strain 52 (5), 400411.CrossRefGoogle Scholar
Fung, C., et al. 2019 Anatomical evaluation of intracranial aneurysm rupture risk in patients with multiple aneurysms. Neurosurg. Rev. 42 (2), 539547.CrossRefGoogle ScholarPubMed
Gester, K., Lüchtefeld, I., Büsen, M., Sonntag, S.J., Linde, T., Steinseifer, U. & Cattaneo, G. 2016 In vitro evaluation of intra-aneurysmal, flow-diverter-induced thrombus formation: a feasibility study. Am. J. Neuroradiol. 37 (3), 490496.CrossRefGoogle ScholarPubMed
Gillani, N.V. & Swanson, W.M. 1976 Time-dependent laminar incompressible flow through a spherical cavity. J. Fluid Mech. 78 (1), 99127.CrossRefGoogle Scholar
Guo, G., Gong, J. & Zhang, M. 2020 Numerical investigation on flow characteristics of low-speed flow over a cavity with small aspect ratio. Intl J. Mech. Sci. 178, 105632.CrossRefGoogle Scholar
Hammami, F., Ben-Cheikh, N., Ben-Beya, B. & Souayeh, B. 2018 Combined effects of the velocity and the aspect ratios on the bifurcation phenomena in a two-sided lid-driven cavity flow. Intl J. Numer. Meth. Heat luid Flow 28 (4), 943962.CrossRefGoogle Scholar
Hanel, R.A., Monteiro, A., Nelson, P.K., Lopes, D.K. & Kallmes, D.F. 2022 Predictors of incomplete aneurysm occlusion after treatment with the Pipeline Embolization Device: PREMIER trial 1 year analysis. J. Neurointerv. Surg. 14 (10), 10141017.CrossRefGoogle ScholarPubMed
Higdon, J.J.L. 1985 Stokes flow in arbitrary two-dimensional domains: shear flow over ridges and cavities. J. Fluid Mech. 159 (-1), 195.CrossRefGoogle Scholar
Imai, Y., Sato, K., Ishikawa, T. & Yamaguchi, T. 2008 Inflow into saccular cerebral aneurysms at arterial bends. Ann. Biomed. Engng 36 (9), 14891495.CrossRefGoogle ScholarPubMed
Karl, A., Henry, F.S. & Tsuda, A. 2004 Low Reynolds number viscous flow in an alveolated duct. Trans. ASME J. Biomech. Engng 126 (4), 420429.CrossRefGoogle Scholar
Khorasanizadeh, M.H., et al. 2022 North American multicenter experience with the Flow Redirection Endoluminal Device in the treatment of intracranial aneurysms. J. Neurosurg. 138 (4), 933943.Google ScholarPubMed
Kocur, D., Przybyłko, N., Niedbała, M. & Rudnik, A. 2019 Alternative definitions of cerebral aneurysm morphologic parameters have an impact on rupture risk determination. World Neurosurg. 126, e157e164.CrossRefGoogle ScholarPubMed
Kole, M.J., Miller, T.R., Cannarsa, G., Wessell, A., Jones, S., Le, E., Jindal, G., Aldrich, F., Simard, J.M. & Gandhi, D. 2019 Pipeline embolization device diameter is an important factor determining the efficacy of flow diversion treatment of small intracranial saccular aneurysms. J. Neurointerv. Surg. 11 (10), 10041008.CrossRefGoogle ScholarPubMed
Larrabide, I., Geers, A.J., Morales, H.G., Aguilar, M.L. & Rüfenacht, D.A. 2015 Effect of aneurysm and ICA morphology on hemodynamics before and after flow diverter treatment. J. Neurointerv. Surg. 7 (4), 272280.CrossRefGoogle ScholarPubMed
Le, T.B., Borazjani, I. & Sotiropoulos, F. 2010 Pulsatile flow effects on the hemodynamics of intracranial aneurysms. Trans. ASME J. Biomech. Engng 132 (11), 111009.CrossRefGoogle ScholarPubMed
Li, G., Song, X., Wang, H., Liu, S., Ji, J., Guo, Y., Qiao, A., Liu, Y. & Wang, X. 2021 Prediction of cerebral aneurysm hemodynamics with porous-medium models of flow-diverting stents via deep learning. Front. Physiol. 12, 733444.CrossRefGoogle ScholarPubMed
Liang, L., Steinman, D.A., Brina, O., Chnafa, C., Cancelliere, N.M. & Pereira, V.M. 2019 Towards the clinical utility of CFD for assessment of intracranial aneurysm rupture—a systematic review and novel parameter-ranking tool. J. Neurointerv. Surg. 11 (2), 153158.CrossRefGoogle ScholarPubMed
Lieber, B.B., Livescu, V., Hopkins, L.N. & Wakhloo, A.K. 2002 Particle image velocimetry assessment of stent design influence on intra-aneurysmal flow. Ann. Biomed. Engng 30 (6), 768777.CrossRefGoogle ScholarPubMed
Lieber, B.B., Stancampiano, A.P. & Wakhloo, A.K. 1997 Alteration of hemodynamics in aneurysm models by stenting: influence of stent porosity. Ann. Biomed. Engng 25 (3), 460469.CrossRefGoogle ScholarPubMed
Liou, T.-M., Li, Y.-C. & Wang, T.-C. 2008 Hemodynamics altered by placing helix stents in an aneurysm at a 45$^\circ$ angle to the curved vessel. Phys. Med. Biol. 53 (14), 37633776.CrossRefGoogle Scholar
Liou, T.M. & Liou, S.N. 2004 Pulsatile flows in a lateral aneurysm anchored on a stented and curved parent vessel. Expl Mech. 44 (3), 253260.CrossRefGoogle Scholar
Liou, T.-M., Liou, S.-N. & Chu, K.-L. 2004 Intra-aneurysmal flow with helix and mesh stent placement across side-wall aneurysm pore of a straight parent vessel. Trans. ASME J. Biomech. Engng 126 (1), 3643.CrossRefGoogle ScholarPubMed
Lubicz, B., Collignon, L., Raphaeli, G., Pruvo, J.-P., Bruneau, M., De Witte, O. & Leclerc, X. 2010 Flow-diverter stent for the endovascular treatment of intracranial aneurysms: a prospective study in 29 patients with 34 aneurysms. Stroke 41 (10), 22472253.CrossRefGoogle ScholarPubMed
Luo, B., et al. 2020 Pipeline Embolization device for intracranial aneurysms in a large Chinese cohort: factors related to aneurysm occlusion. Ther. Adv. Neurol. Disord. 13, 175628642096782.CrossRefGoogle Scholar
Makoyeva, A., Bing, F., Darsaut, T.E., Salazkin, I. & Raymond, J. 2013 The varying porosity of braided self-expanding stents and flow diverters: an experimental study. Am. J. Neuroradiol. 34 (3), 596602.CrossRefGoogle ScholarPubMed
Mandrycky, C.J., et al. 2023 Endothelial responses to curvature-induced flow patterns in engineered cerebral aneurysms. Trans. ASME J. Biomech. Engng 145 (1), 011001.CrossRefGoogle ScholarPubMed
Mantha, A.R., Benndorf, G., Hernandez, A. & Metcalfe, R.W. 2009 Stability of pulsatile blood flow at the ostium of cerebral aneurysms. J. Biomech. 42 (8), 10811087.CrossRefGoogle ScholarPubMed
McConalogue, D.J. & Srivastava, R.S. 1968 Motion of a fluid in a curved tube. Proc. R. Soc. Lond. A Math. Phys. Sci. 307 (1488), 3753.Google Scholar
Meng, H., Wang, Z., Kim, M., Ecker, R.D. & Hopkins, L.N. 2006 Saccular aneurysms on straight and curved vessels are subject to different hemodynamics: implications of intravascular stenting. Am. J. Neuroradiol. 27 (9), 18611865.Google ScholarPubMed
Mignot, E., Cai, W. & Riviere, N. 2019 Analysis of the transitions between flow patterns in open-channel lateral cavities with increasing aspect ratio. Environ. Fluid Mech. 19 (1), 231253.CrossRefGoogle Scholar
Moriwaki, T., Tajikawa, T. & Nakayama, Y. 2018 Hydrodynamical evaluation of microporous covered stent for the treatment of intracranial aneurysms: comparison of flow reduction property with flow diverter stent by using particle imaging velocimetry and in vitro flow simulator. J. Biorheol. 32 (1), 2025.CrossRefGoogle Scholar
Moriwaki, T., Tajikawa, T. & Nakayama, Y. 2020 In vitro hydrodynamical study on aneurysmal morphology for treating intracranial aneurysms using particle imaging velocimetry. J. Biorheol. 34 (2), 4754.CrossRefGoogle Scholar
Mut, F., Raschi, M., Scrivano, E., Bleise, C., Chudyk, J., Ceratto, R., Lylyk, P. & Cebral, J.R. 2015 Association between hemodynamic conditions and occlusion times after flow diversion in cerebral aneurysms. J. Neurointerv. Surg. 7 (4), 286290.CrossRefGoogle ScholarPubMed
Nagargoje, M.S., Valeti, C., Manjunath, N., Akhade, B., Sudhir, B.J., Patnaik, B.S.V. & Kannath, S.K. 2022 Influence of morphological parameters on hemodynamics in internal carotid artery bifurcation aneurysms. Phys. Fluids 34 (10), 101901.CrossRefGoogle Scholar
Nair, P., Chong, B.W., Indahlastari, A., Ryan, J., Workman, C., Haithem Babiker, M., Yadollahi Farsani, H., Baccin, C.E. & Frakes, D. 2016 Hemodynamic characterization of geometric cerebral aneurysm templates treated with embolic coils. Trans. ASME J. Biomech. Engng 138 (2), 021011.CrossRefGoogle ScholarPubMed
Najjari, M.R., Cox, C. & Plesniak, M.W. 2019 Formation and interaction of multiple secondary flow vortical structures in a curved pipe: transient and oscillatory flows. J. Fluid Mech. 876, 481526.CrossRefGoogle Scholar
Ngoepe, M.N., Frangi, A.F., Byrne, J.V. & Ventikos, Y. 2018 Thrombosis in cerebral aneurysms and the computational modeling thereof: a review. Front. Physiol. 9, 306.CrossRefGoogle ScholarPubMed
Ouared, R., Larrabide, I., Brina, O., Bouillot, P., Erceg, G., Yilmaz, H., Lovblad, K.-O. & Mendes Pereira, V. 2016 Computational fluid dynamics analysis of flow reduction induced by flow-diverting stents in intracranial aneurysms: a patient-unspecific hemodynamics change perspective. J. Neurointerv. Surg. 8 (12), 12881293.CrossRefGoogle ScholarPubMed
Paliwal, N., Damiano, R.J., Davies, J.M., Siddiqui, A.H. & Meng, H. 2017 Association between hemodynamic modifications and clinical outcome of intracranial aneurysms treated using flow diverters. Proc. SPIE 10135, 101352F.Google ScholarPubMed
Pan, F. & Acrivos, A. 1967 Steady flows in rectangular cavities. J. Fluid Mech. 28 (4), 643655.CrossRefGoogle Scholar
Pereira, V.M., et al. 2013 A DSA-based method using contrast-motion estimation for the assessment of the intra-aneurysmal flow changes induced by flow-diverter stents. Am. J. Neuroradiol. 34 (4), 808815.CrossRefGoogle ScholarPubMed
Pierot, L. & Wakhloo, A.K. 2013 Endovascular treatment of intracranial aneurysms: current status. Stroke 44 (7), 20462054.CrossRefGoogle ScholarPubMed
Rayepalli, S., Gupta, R., Lum, C., Majid, A. & Koochesfahani, M. 2013 The impact of stent strut porosity on reducing flow in cerebral aneurysms: stent strut porosity in reducing flow. J. Neuroimaging. 23 (4), 495501.CrossRefGoogle ScholarPubMed
Rayz, V.L., Boussel, L., Ge, L., Leach, J.R., Martin, A.J., Lawton, M.T., McCulloch, C. & Saloner, D. 2010 Flow residence time and regions of intraluminal thrombus deposition in intracranial aneurysms. Ann. Biomed. Engng 38 (10), 30583069.CrossRefGoogle ScholarPubMed
Rinaldo, L., Brinjikji, W., Cloft, H.J., Kallmes, D.F. & Rangel-Castilla, L. 2019 Effect of carotid siphon anatomy on aneurysm occlusion after flow diversion for treatment of internal carotid artery aneurysms. Oper. Neurosurg. 17 (2), 123131.CrossRefGoogle ScholarPubMed
Roloff, C. & Berg, P. 2022 Effect of flow diverter stent malposition on intracranial aneurysm hemodynamics—an experimental framework using stereoscopic particle image velocimetry. PLoS ONE 17 (3), e0264688.CrossRefGoogle ScholarPubMed
Roszelle, B.N., Babiker, M.H., Hafner, W., Gonzalez, L.F., Albuquerque, F.C. & Frakes, D.H. 2013 In vitro and in silico study of intracranial stent treatments for cerebral aneurysms: effects on perforating vessel flows. J. Neurointerv. Surg. 5 (4), 354360.CrossRefGoogle ScholarPubMed
Sarrami-Foroushani, A., Lassila, T., MacRaild, M., Asquith, J., Roes, K.C.B., Byrne, J.V. & Frangi, A.F. 2021 In-silico trial of intracranial flow diverters replicates and expands insights from conventional clinical trials. Nat. Commun. 12 (1), 3861.CrossRefGoogle ScholarPubMed
Shapiro, M., Becske, T. & Nelson, P.K. 2017 Learning from failure: persistence of aneurysms following pipeline embolization. J. Neurosurg. 126 (2), 578585.CrossRefGoogle ScholarPubMed
Shen, C. & Floryan, J.M. 1985 Low Reynolds number flow over cavities. Phys. Fluids 28 (11), 3191.CrossRefGoogle Scholar
Shen, F., Ai, M., Zhao, S., Yan, C. & Liu, Z. 2022 Transient flow patterns of start-up flow in round microcavities. Microfluid Nanofluid 26 (8), 57.CrossRefGoogle Scholar
Shojima, M. 2017 Basic fluid dynamics and tribia related to flow diverter. J. Neuroendovascular Ther. 11 (3), 109116.CrossRefGoogle Scholar
Simgen, A., Roth, C., Kulikovski, J., Papanagiotou, P., Roumia, S., Dietrich, P., Mühl-Benninghaus, R., Kettner, M., Reith, W. & Yilmaz, U. 2022 Endovascular treatment of unruptured intracranial aneurysms with flow diverters: a retrospective long-term single center analysis. Neuroradiol. J. doi:10.1177/197140092211086.Google ScholarPubMed
Sobey, I.J. 1980 On flow through furrowed channels. Part 1. Calculated flow patterns. J. Fluid Mech. 96 (01), 126.CrossRefGoogle Scholar
Song, K.W., Tagawa, T., Chen, Z.H. & Zhang, Q. 2019 Heat transfer characteristics of concave and convex curved vortex generators in the channel of plate heat exchanger under laminar flow. Intl J. Therm. Sci. 137, 215228.CrossRefGoogle Scholar
Su, T., Reymond, P., Brina, O., Bouillot, P., Machi, P., Delattre, B.M.A., Jin, L., Lövblad, K.O. & Vargas, M.I. 2020 Large neck and strong ostium inflow as the potential causes for delayed occlusion of unruptured sidewall intracranial aneurysms treated by flow diverter. Am. J. Neuroradiol. 41 (3), 488494.CrossRefGoogle ScholarPubMed
Sunohara, T., et al. 2021 Neck location on the outer convexity is a predictor of incomplete occlusion in treatment with the pipeline embolization device: clinical and angiographic outcomes. Am. J. Neuroradiol. 42 (1), 119125.CrossRefGoogle ScholarPubMed
Suzuki, T., Takao, H., Fujimura, S., Dahmani, C., Ishibashi, T., Mamori, H., Fukushima, N., Yamamoto, M. & Murayama, Y. 2017 Selection of helical braided flow diverter stents based on hemodynamic performance and mechanical properties. J. Neurointerv. Surg. 9 (10), 9991005.CrossRefGoogle ScholarPubMed
Tinsson, W. 2010 Plans d'expérience: Constructions et Analyses Statistiques, Mathématiques et Applications, vol. 67. Springer Berlin Heidelberg.Google Scholar
Tupin, S., Saqr, K.M. & Ohta, M. 2020 Effects of wall compliance on multiharmonic pulsatile flow in idealized cerebral aneurysm models: comparative PIV experiments. Exp. Fluids 61 (7), 164.CrossRefGoogle Scholar
Usmani, A.Y. & Muralidhar, K. 2018 Flow in an intracranial aneurysm model: effect of parent artery orientation. J. Vis. 21 (5), 795818.CrossRefGoogle Scholar
Wang, H., Uhlmann, K., Vedula, V., Balzani, D. & Varnik, F. 2022 Fluid-structure interaction simulation of tissue degradation and its effects on intra-aneurysm hemodynamics. Biomech. Model. Mechanobiol. 21 (2), 671683.CrossRefGoogle ScholarPubMed
Wang, K., Huang, Q., Hong, B., Li, Z., Fang, X. & Liu, J. 2012 Correlation of aneurysm occlusion with actual metal coverage at neck after implantation of flow-diverting stent in rabbit models. Neuroradiology 54 (6), 607613.CrossRefGoogle ScholarPubMed
Waqas, M., Vakharia, K., Gong, A.D., Rai, H.H., Wack, A., Fayyaz, N., Snyder, K.V., Davies, J.M., Siddiqui, A.H. & Levy, E.I. 2020 One and done? The effect of number of Pipeline embolization devices on aneurysm treatment outcomes. Interv. Neuroradiol. 26 (2), 147155.CrossRefGoogle ScholarPubMed
Weiss, R.F. & Florsheim, B.H. 1965 Flow in a cavity at low Reynolds number. Phys. Fluids 8 (9), 1631.CrossRefGoogle Scholar
Williams, G.S., Hubbell, C.W. & Fenkell, G.M. 1902 Experiments at Detroit, Mich., on the effect of curvature upon the flow of water in pipes. Trans. Am. Soc. Civil Engrs 47, 1196.CrossRefGoogle Scholar
Womersley, J.R. 1955 Method for the calculation of velocity, rate of flow and viscous drag in arteries when the pressure gradient is known. J. Physiol. 127 (3), 553563.CrossRefGoogle ScholarPubMed
Xu, J., Wu, Z., Yu, Y., Lv, N., Wang, S., Karmonik, C., Liu, J.-M. & Huang, Q. 2015 Combined effects of flow diverting strategies and parent artery curvature on aneurysmal hemodynamics: a CFD study. PLoS ONE 10 (9), e0138648.Google ScholarPubMed
Yu, C.-H., Matsumoto, K., Shida, S., Kim, D.J. & Ohta, M. 2012 A steady flow analsys on a cerebral aneurysm model with several stents for new stent design using PIV. J. Mech. Sci. Technol. 26 (5), 13331340.CrossRefGoogle Scholar
Zhang, Y., Chong, W. & Qian, Y. 2013 Investigation of intracranial aneurysm hemodynamics following flow diverter stent treatment. Med. Engng Phys. 35 (5), 608615.CrossRefGoogle ScholarPubMed
Zhang, Y., Wang, Y., Kao, E., Flórez-Valencia, L. & Courbebaisse, G. 2019 Towards optimal flow diverter porosity for the treatment of intracranial aneurysm. J. Biomech. 82, 2027.CrossRefGoogle ScholarPubMed

Chassagne et al. Supplementary Movie

Illustration of the vortex breakdown for the extreme geometry K+/AR+/N+

Download Chassagne et al. Supplementary Movie(Video)
Video 5 MB