Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-12T09:48:52.891Z Has data issue: false hasContentIssue false

Faraday waves: their dispersion relation, nature of bifurcation and wavenumber selection revisited

Published online by Cambridge University Press:  15 July 2015

Jean Rajchenbach*
Affiliation:
Laboratoire de Physique de la Mati\`ere Condensée, CNRS UMR 7336, Université de Nice – Sophia Antipolis, Parc Valrose, 06108 Nice CEDEX 2, France
Didier Clamond
Affiliation:
Laboratoire J. A. Dieudonné, CNRS UMR 7351, Université de Nice – Sophia Antipolis, Parc Valrose, 06108 Nice CEDEX 2, France
*
Email address for correspondence: Jean.Rajchenbach@unice.fr

Abstract

In the current literature, the dispersion relation of parametrically forced surface waves is often identified with that of free unforced waves. We revisit here the theoretical description of Faraday waves, showing that forcing and dissipation play a significant role in the dispersion relation, rendering it bi-valued. We then determine the instability thresholds and the wavenumber selection in cases of both short and long waves. We show that the bifurcation can be either supercritical or subcritical, depending on the depth.

Type
Rapids
Copyright
© 2015 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abramowitz, M. & Stegun, I. A. 1965 Handbook of Mathematical Functions. Dover.Google Scholar
Arbell, H. & Fineberg, J. 2000 Temporally harmonic oscillons in Newtonian fluids. Phys. Rev. Lett. 85, 756759.Google Scholar
Benjamin, T. B. & Ursell, F. 1954 The stability of the plane free surface of a liquid in vertical periodic motion. Proc. R. Soc. Lond. A 225, 505515.Google Scholar
Christiansen, B., Alstrøm, P. & Levinsen, M. 1992 Ordered capillary-wave states: quasicrystals, hexagons, and radial waves. Phys. Rev. Lett. 68, 21572161.Google Scholar
Ciliberto, S. & Gollub, J. P. 1985 Chaotic mode competition in parametrically forced surface waves. J. Fluid Mech. 158, 381398.Google Scholar
Douady, S. & Fauve, S. 1988 Pattern selection in Faraday instability. Europhys. Lett. 6, 221226.Google Scholar
Edwards, W. S. & Fauve, S. 1994 Patterns and quasi-patterns in the Faraday experiment. J. Fluid Mech. 278, 123148.Google Scholar
Faraday, M. 1831 On the forms and states of fluids on vibrating elastic surfaces. Phil. Trans. R. Soc. Lond. 52, 299340.Google Scholar
Fauve, S. 1998 Pattern forming instabilities. In Hydrodynamics and Nonlinear Instabilities (ed. Godr\`eche, C. & Manneville, P.), pp. 387491. Cambridge University Press.Google Scholar
Francois, N., Xia, H., Punzmann, H. & Shats, M. 2013 Inverse energy cascade and emergence of large coherent vortices in turbulence driven by Faraday waves. Phys. Rev. Lett. 110, 194501.Google Scholar
Hammack, J. L. & Henderson, D. M. 1993 Resonant interactions among surface water waves. Annu. Rev. Fluid Mech. 25, 5597.Google Scholar
Hough, S. S. 1896. On the influence of viscosity on waves and currents. Proc. Lond. Math. Soc. 28, 264288.Google Scholar
Hunt, J. N. 1964 The damping of gravity waves in shallow water. La Houille Blanche 6, 685691.Google Scholar
Kudrolli, A. & Gollub, J. P. 1996 Patterns and spatiotemporal chaos in parametrically forced surface waves: a systematic survey at large aspect ratio. Physica D 97, 133154.Google Scholar
Kumar, K. 1996 Linear theory of Faraday instability in viscous fluids. Proc. R. Soc. Lond. A 452, 11131126.Google Scholar
Kumar, K. & Tuckerman, L. S. 1994 Parametric instability of the interface between two fluids. J. Fluid Mech. 279, 4968.Google Scholar
Landau, L. D. & Lifschitz, E. M. 1976 Course of Theoretical Physics, Vol. 1 Mechanics, 3rd edn. Butterworth-Heinemann.Google Scholar
Littman, W. 1957 On the existence of periodic waves near critical speed. Commun. Pure Appl. Maths 10 (2), 241269.Google Scholar
Mancebo, F. J. & Vega, J. M. 2004 Standing wave description of nearly conservative, parametrically driven waves in extended systems. Physica D 197, 346363.Google Scholar
Meron, E. 1987 Parametric excitation of a multimode dissipative system. Phys. Rev. A 35, 48924895.Google Scholar
Milner, S. T. 1992 Square patterns and secondary instabilities in driven capillary waves. J. Fluid Mech. 225, 81100.Google Scholar
Miles, J. W. 1999 On Faraday resonance of a viscous liquid. J. Fluid Mech. 395, 321325.Google Scholar
Miles, J. W. & Henderson, D. 1990 Parametrically forced surface waves. Annu. Rev. Fluid Mech. 22, 143165.Google Scholar
Müller, H. W., Wittmer, H., Wagner, C., Albers, J. & Knorr, K. 1997 Analytic stability theory for Faraday waves and the observation of the harmonic surface response. Phys. Rev. Lett. 78, 23572360.Google Scholar
Phillips, O. M. 1981 Wave interactions – the evolution of an idea. J. Fluid Mech. 106, 215227.Google Scholar
Rajchenbach, J., Clamond, D. & Leroux, A. 2013 Observation of star-shaped surface gravity waves. Phys. Rev. Lett. 110, 094502. Movies at: http://journals.aps.org/prl/supplemental/10.1103/PhysRevLett.110.094502/movie1.mpg.Google Scholar
Rajchenbach, J., Leroux, A. & Clamond, D. 2011 New standing solitary waves in water. Phys. Rev. Lett. 107, 024502.Google Scholar
Skeldon, A. C. & Rucklidge, A. M.2015 Can weakly nonlinear theory explain Faraday wave patterns near onset? arXiv:1504.01553.Google Scholar
Tadjbakhsh, I. & Keller, J. B. 1960 Standing surface waves of finite amplitude. J. Fluid Mech. 3, 442451.Google Scholar
Wehausen, J. V. & Laitone, E. V. 1960 Surface waves. In Encyclopaedia of Physics, vol. IX, pp. 446778. Springer.Google Scholar
Wu, J., Keolian, R. & Rudnick, I. 1984 Observation of a non propagating hydrodynamic soliton. Phys. Rev. Lett. 52, 14211424.Google Scholar
Zhang, W. & Viñals, J. 1997 Pattern formation in weakly damped parametric surface waves. J. Fluid Mech. 336, 301330.Google Scholar