Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-12T05:41:52.885Z Has data issue: false hasContentIssue false

External turbulence-induced axial flow and instability in a vortex

Published online by Cambridge University Press:  16 March 2016

Eric Stout
Affiliation:
Department of Mechanical Engineering, Texas Tech University, Lubbock, TX 79409, USA
Fazle Hussain*
Affiliation:
Department of Mechanical Engineering, Texas Tech University, Lubbock, TX 79409, USA
*
Email address for correspondence: fazlehussain@gmail.com

Abstract

External turbulence-induced axial flow in an incompressible, normal-mode stable Lamb–Oseen (two-dimensional) vortex column is studied via direct numerical simulations of the Navier–Stokes equations. Azimuthally oriented vorticity filaments, formed from external turbulence, advect radially towards or away from the vortex axis (depending on the filament’s swirl direction), resulting in a net induced axial flow in the vortex core; axial flow increases with increasing vortex Reynolds number ($Re=$ vortex circulation/viscosity). This contrasts the viscous mechanism for axial flow generation downstream of a lifting body, wherein an axial pressure gradient is produced by viscous diffusion of the swirl (Batchelor, J. Fluid Mech., vol. 20, 1964, pp. 645–658). Analysis of the self-induced motion of an arbitrarily curved external filament shows that any non-axisymmetric filament undergoes radial advection. We then studied the evolution of a vortex column starting with an imposed optimal transient growth perturbation. For a range of Re values, axial flow develops and initially grows as (time)$^{5/2}$ before decreasing after two turnover times; for $Re=10\,000$ – the highest computationally achievable – axial flow at late times becomes sufficiently strong to induce vortex instability. Contrary to a prior claim of a parent–offspring mechanism at the outer edge of the core, vorticity tilting within the core by axial flow is the underlying mechanism producing energy growth. Thus, external perturbations in practical flows (at $Re\sim 10^{7}$) produce destabilizing axial flow, possibly leading to the sought-after vortex breakup.

Type
Papers
Copyright
© 2016 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Antkowiak, A. & Brancher, P. 2004 Transient energy growth for the Lamb–Oseen vortex. Phys. Fluids 16, L1–L4.Google Scholar
Antkowiak, A. & Brancher, P. 2007 On vortex rings around vortices: an optimal mechanism. J. Fluid Mech. 578, 295304.CrossRefGoogle Scholar
Batchelor, G. K. 1964 Axial flow in trailing line vortices. J. Fluid Mech. 20, 645658.CrossRefGoogle Scholar
Broderick, A., Bevilaqua, P., Crouch, J., Gregory, F., Hussain, F., Jeffers, B., Newton, D., Nguyen, D., Powell, J., Spain, A. et al. 2008 Wake turbulence – an obstacle to increased air traffic capacity. National Research Council, ISBN: 0-309-11380-6, www.nap.edu/catalog/12044.html.Google Scholar
Callegari, A. J. & Ting, L. 1978 Stability of symmetric and asymmetric vortex pairs over slender conical wings and bodies. SIAM J. Appl. Math. 35, 148175.CrossRefGoogle Scholar
Fabre, D., Sipp, D. & Jacquin, L. 2006 Kelvin waves and the singular modes of the Lamb–Oseen vortex. J. Fluid Mech. 551, 235274.CrossRefGoogle Scholar
Govindaraju, S. P. & Saffman, P.G. 1971 Flow in a turbulent trailing vortex. Phys. Fluids 14, 20742080.Google Scholar
Hama, F. 1962 Progressive deformation of a curved vortex filament by its own induction. Phys. Fluids 5, 11561162.CrossRefGoogle Scholar
Hardin, J. C. 1982 The velocity field induced by a helical vortex filament. Phys. Fluids 25, 19491952.CrossRefGoogle Scholar
Heaton, C. J. & Peake, N. 2007 Transient growth in vortices with axial flow. J. Fluid Mech. 587, 271301.CrossRefGoogle Scholar
Hussain, A. K. M. F. 1986 Coherent structures and turbulence. J. Fluid Mech. 173, 303356.Google Scholar
Hussain, F., Pradeep, D. S. & Stout, E. 2011 Nonlinear transient growth in a vortex column. J. Fluid Mech. 682, 304331.CrossRefGoogle Scholar
Hussain, F. & Stout, E. 2013 Self-limiting and regenerative dynamics of perturbation growth on a vortex column. J. Fluid Mech. 718, 3988.CrossRefGoogle Scholar
Jacquin, L. & Pantano, C. 2002 On the persistence of trailing vortices. J. Fluid Mech. 471, 159168.CrossRefGoogle Scholar
Jeong, J. & Hussain, F. 1995 On the identification of a vortex. J. Fluid Mech. 285, 6994.CrossRefGoogle Scholar
Kerswell, R. 2002 Elliptical instability. Annu. Rev. Fluid Mech. 34, 83113.CrossRefGoogle Scholar
Leibovich, S. 1978 The structure of vortex breakdown. Annu. Rev. Fluid Mech. 10, 221246.Google Scholar
Lessen, M., Singh, P. & Paillet, F. 1974 The stability of a trailing line vortex. Part 1. Inviscid theory. J. Fluid Mech. 63, 753763.CrossRefGoogle Scholar
Mansour, N. N & Wray, A. A. 1994 Decay of isotropic turbulence at low Reynolds number. Phys. Fluids 6 (2), 808814.Google Scholar
Melander, M. V. & Hussain, F. 1993a Coupling between a coherent structure and fine-scale turbulence. Phys. Rev. E 48 (4), 26692689.CrossRefGoogle ScholarPubMed
Melander, M. V. & Hussain, F. 1993b Polarized vorticity dynamics on a vortex column. Phys. Fluids A 5, 19922003.CrossRefGoogle Scholar
Melander, M. V. & Hussain, F. 1994 Core dynamics on a vortex column. Fluid Dyn. Res. 13 (1), 137.Google Scholar
Moin, P. 2001 Fundamentals of Engineering Numerical Analysis. Cambridge University Press.Google Scholar
Morkovin, M.1969 Critical evaluation of transition from laminar to turbulent shear layers with emphasis on hypersonically traveling bodies. Tech. Rep. AFFDL-Tr-68-149.Google Scholar
Pradeep, D. S. & Hussain, F. 2004 Effects of boundary condition in numerical simulations of vortex dynamics. J. Fluid Mech. 516, 115124.CrossRefGoogle Scholar
Pradeep, D. S. & Hussain, F. 2006 Transient growth of perturbations in a vortex column. J. Fluid Mech. 550, 251288.CrossRefGoogle Scholar
Pradeep, D. S. & Hussain, F. 2010 Vortex dynamics of turbulence–coherent structure interaction. Theor. Comput. Fluid Dyn. 24, 265282.Google Scholar
Rennich, S. C. & Lele, S. K. 1997 Numerical method for incompressible vortical flows with two unbounded directions. J. Comput. Phys. 137 (1), 101129.CrossRefGoogle Scholar
Schmücker, A. & Gersten, K. 1988 Vortex breakdown and its control on delta wings. Fluid Dyn. Res. 3 (1–4), 268272.Google Scholar
Schoppa, W. & Hussain, F. 2002 Coherent structure generation in near-wall turbulence. J. Fluid Mech. 453, 57108.CrossRefGoogle Scholar
Spalart, P. 1998 Aircraft trailing vortices. Annu. Rev. Fluid Mech. 30, 107138.CrossRefGoogle Scholar
Stewartson, K. & Brown, S. 1985 Near-neutral center-modes as inviscid perturbations to a trailing line vortex. J. Fluid Mech. 156, 387399.Google Scholar