No CrossRef data available.
Published online by Cambridge University Press: 28 July 2025
This study investigated the cylindrically divergent Rayleigh–Taylor instability (RTI) on a liquid–gas interface and its dependence on initial conditions. A novel hydrophobic technique was developed to generate a two-dimensional water–air interface with controlled initial conditions. The experimental configuration utilised high-pressure air injection to produce uniform circumferential acceleration. Amplitude measurements over time revealed that the cylindrical RTI growth depends strongly on the azimuthal wavenumber. Experimental results demonstrated that surface tension significantly suppresses the liquid–gas cylindrical RTI, even inducing a freeze-out and oscillatory perturbation growth – a phenomenon observed for the first time. Spectrum analysis of the interface contours demonstrated that the cylindrical RTI evolves in a weakly nonlinear regime. Linear and weakly nonlinear models were derived to accurately predict the time-varying interface amplitudes and high-order modes. The linear model was further used to determine conditions for unstable, freeze-out and oscillatory solutions of the cylindrically divergent RTI. These findings offer valuable insights into manipulating hydrodynamic instabilities in contracting/expanding geometries using surface tension.