Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-12T05:45:01.188Z Has data issue: false hasContentIssue false

Excitation of superharmonics by internal modes in non-uniformly stratified fluid

Published online by Cambridge University Press:  16 March 2016

Bruce R. Sutherland*
Affiliation:
Departments of Physics and of Earth and Atmospheric Sciences, University of Alberta, Edmonton, AB, Canada T6G 2E1
*
Email address for correspondence: bruce.sutherland@ualberta.ca

Abstract

Theory and numerical simulations show that the nonlinear self-interaction of internal modes in non-uniform stratification results in energy being transferred to superharmonic disturbances forced at twice the horizontal wavenumber and frequency of the parent mode. These disturbances are not in themselves a single mode, but a superposition of modes such that the disturbance amplitude is largest where the change in the background buoyancy frequency with depth is largest. Through weakly nonlinear interactions with the parent mode, the disturbances evolve to develop vertical-scale structures that distort and modulate the parent mode. Because pure resonant wave triads do not exist in non-uniformly stratified fluid, parametric subharmonic instability (PSI) is not evident even though noise is superimposed upon the initial state. The results suggest a new mechanism for energy transfer to dissipative scales (from large to small vertical scale and with frequencies larger and smaller than that of the parent mode) through forcing superharmonic rather than subharmonic disturbances.

Type
Papers
Copyright
© 2016 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alford, M. H. 2008 Observations of parametric subharmonic instability of the diurnal internal tide in the South China Sea. Geophys. Res. Lett. 35, L15602.CrossRefGoogle Scholar
Alford, M. H., Mackinnon, J. A., Zhao, Z., Pinkel, R., Klymak, J. & Peacock, T. 2007 Internal waves across the Pacific. Geophys. Res. Lett. 34, L24601.CrossRefGoogle Scholar
Balmforth, N. J., Ierley, G. R. & Young, W. R. 2002 Tidal conversion by subcritical topography. J. Phys. Oceanogr. 32 (10), 29002914.2.0.CO;2>CrossRefGoogle Scholar
Bourget, B., Dauxois, T., Joubaud, S. & Odier, P. 2013 Experimental study of parametric subharmonic instability for internal plane waves. J. Fluid Mech. 723, 120.Google Scholar
Bouruet-Aubertot, P., Sommeria, J. & Staquet, C. 1995 Instabilities and breaking of standing internal gravity waves. J. Fluid Mech. 285, 265301.CrossRefGoogle Scholar
Chou, S. H., Luther, D. S., Guiles, M. D., Carter, G. S. & Decloedt, T. 2014 An empirical investigation of nonlinear energy transfer from the $\text{M}_{2}$ internal tide to diurnal wave motions in the Kauai Channel, Hawaii. Geophys. Res. Lett. 41, 505512.Google Scholar
Diamessis, P. J., Wunsch, S., Delwiche, I. & Richter, M. P. 2014 Nonlinear generation of harmonics through the interaction of an internal wave beam with a model oceanic pycnocline. Dyn. Atmos. Oceans 66, 110137.CrossRefGoogle Scholar
Hasselmann, K. 1962 On the non-linear energy transfer in a gravity wave spectrum. Part 1. J. Fluid Mech. 12, 481500.CrossRefGoogle Scholar
Hazewinkel, J. & Winters, K. B. 2011 PSI of the internal tide on a ${\it\beta}$ plane: flux divergence and near-inertial wave propagation. J. Phys. Oceanogr. 41, 16731682.Google Scholar
Hibiya, T. & Nagasawa, M. 2004 Latitudinal dependence of diapycnal diffusivity in the thermocline estimate using a finescale parameterization. Geophys. Res. Lett. 31, L01301.Google Scholar
Karimi, H. H. & Akylas, T. R. 2014 Parametric subharmonic instability of internal waves: locally confined beams versus monochromatic wavetrains. J. Fluid Mech. 757, 381402.Google Scholar
Llewellyn-Smith, S. G. & Young, W. R. 2002 Conversion of the barotropic tide. J. Phys. Oceanogr. 32, 15541566.Google Scholar
Lombard, P. N. & Riley, J. J. 1996 Instability and breakdown of internal gravity waves. I: linear stability analysis. Phys. Fluids 8, 32713287.Google Scholar
Mackinnon, J. A., Alford, M. H., Sun, O., Pinkel, R., Zhao, Z. & Klymak, J. 2013 Parametric subharmonic instability of the internal tide at 29°N. J. Phys. Oceanogr. 43, 1728.Google Scholar
Mackinnon, J. A. & Winters, K. B. 2005 Subtropical catastrophe: significant loss of low-mode tidal energy at 28.9°N. Geophys. Res. Lett. 32, L15605.CrossRefGoogle Scholar
Martin, J. P., Rudnick, D. L. & Pinkel, R. 2006 Spatially broad observations of internal waves in the upper ocean at the Hawaiian Ridge. J. Phys. Oceanogr. 36, 10851103.CrossRefGoogle Scholar
Peacock, T., Echeverri, P. & Balmforth, N. J. 2008 An experimental investigation of internal tide generation by two-dimensional topography. J. Phys. Oceanogr. 38, 235242.CrossRefGoogle Scholar
Phillips, O. M. 1960 On the dynamics of unsteady gravity waves of finite amplitude. Part 1. The elementary interactions. J. Fluid Mech. 9, 193217.Google Scholar
Press, W. H., Teukolsky, S. A., Vetterling, W. T. & Flannery, B. P. 2007 Numerical Recipes: The Art of Scientific Computing, 3rd edn. Cambridge University Press.Google Scholar
Rainville, L. & Pinkel, R. 2006 Baroclinic energy flux at the Hawaiian Ridge: observations from the R/P FLIP. J. Phys. Oceanogr. 36, 11041122.Google Scholar
Sutherland, B. R. 2010 Internal Gravity Waves. Cambridge University Press.Google Scholar
Sutherland, B. R. & Peltier, W. R. 1994 Turbulence transition and internal wave generation in density stratified jets. Phys. Fluids 6, 12671284.CrossRefGoogle Scholar
Young, W. R., Tsang, Y.-K. & Balmforth, N. J. 2008 Near-inertial parametric subharmonic instability. J. Fluid Mech. 607, 2549.CrossRefGoogle Scholar
Zhou, Q. & Diamessis, P. J. 2013 Reflection of an internal gravity wave beam off a horizontal free-slip surface. Phys. Fluids 25, 036601.Google Scholar

Sutherland supplementary movie

Movie of internal mode evolution at a thick interface centred in the domain, corresponding to Figure 2 of the manuscript.

Download Sutherland supplementary movie(Video)
Video 4.2 MB

Sutherland supplementary movie

Movie of internal mode evolution at a thick interface shifted toward the top of the domain, corresponding to snapshot in Figure 6b, with frequency spectrum analysis shown in Figure 8.

Download Sutherland supplementary movie(Video)
Video 4.4 MB

Sutherland supplementary movie

Movie of internal mode evolution in a model seasonal thermocline, corresponding to Figure 9.

Download Sutherland supplementary movie(Video)
Video 3.9 MB