Published online by Cambridge University Press: 08 March 2021
New analytical solutions for the one-dimensional steady-state compressible viscous adiabatic flow of an ideal gas through a conical nozzle or diffuser have been obtained. In order to analytically solve the problem, it is essential to determine the correct transformations of the variables and to identify the kinetic energy per unit of mass as the physical variable that appears in the final Abel ordinary differential equation.
A dimensionless representation is given of the new solution, which points out the fundamental role exerted by some dimensionless groups in problems where viscous power dissipation and variable flow areas are present simultaneously as driving factors of flow changes. Furthermore, a steady-state fluid dynamics analysis of the compressible viscous flows in conical nozzles and diffusers has been carried out to improve the physical interpretation of the solutions.
Finally, the thus determined analytical solutions have been validated for both subsonic and supersonic flows through a comparison with numerical solutions pertaining to the same ordinary differential equation. However, when the exact solution includes shocks, the time-asymptotic numerical solutions of the Euler equations for the quasi-one-dimensional unsteady-state gas dynamics are used for validation and the discretisation is performed by applying a finite volume technique.
The proposed analytical solutions are complementary to the Fanno and nozzle models that refer to a viscous adiabatic constant cross-section pipe flow and an inviscid adiabatic variable cross-section pipe flow, respectively, and extend the collection of the exact solutions of gas dynamics.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.