Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-11T23:46:06.834Z Has data issue: false hasContentIssue false

Exact regularised point particle (ERPP) method for particle-laden wall-bounded flows in the two-way coupling regime

Published online by Cambridge University Press:  10 September 2019

F. Battista*
Affiliation:
ENEA, Italian Agency for New Technologies, Energy and Sustainable Economic Development, Via Anguillarese 301, 00123 Rome, Italy
J.-P. Mollicone
Affiliation:
Department of Civil and Environmental Engineering, Imperial College London, London SW7 2AZ, UK
P. Gualtieri
Affiliation:
Department of Mechanical and Aerospace Engineering, Sapienza University of Rome, Via Eudossiana 18, 00184 Rome, Italy
R. Messina
Affiliation:
Department of Mechanical and Aerospace Engineering, Sapienza University of Rome, Via Eudossiana 18, 00184 Rome, Italy
C. M. Casciola
Affiliation:
Department of Mechanical and Aerospace Engineering, Sapienza University of Rome, Via Eudossiana 18, 00184 Rome, Italy
*
Email address for correspondence: francesco.battista@uniroma1.it

Abstract

The exact regularised point particle (ERPP) method is extended to treat the inter-phase momentum coupling between particles and fluid in the presence of walls by accounting for vorticity generation due to particles close to solid boundaries. The ERPP method overcomes the limitations of other methods by allowing the simulation of an extensive parameter space (Stokes number, mass loading, particle-to-fluid density ratio and Reynolds number) and of particle spatial distributions that are uneven (few particles per computational cell). The enhanced ERPP method is explained in detail and validated by considering the global impulse balance. In conditions when particles are located close to the wall, a common scenario in wall-bounded turbulent flows, the main contribution to the total impulse arises from the particle-induced vorticity at the solid boundary. The method is applied to direct numerical simulations of particle-laden turbulent pipe flow in the two-way coupling regime to address turbulence modulation. The effects of the mass loading, the Stokes number and the particle-to-fluid density ratio are investigated. The drag is either unaltered or increased by the particles with respect to the uncoupled case. No drag reduction is found in the parameter space considered. The momentum stress budget, which includes an extra stress contribution by the particles, provides the rationale behind the drag behaviour. The extra stress produces a momentum flux towards the wall that strongly modifies the viscous stress, the culprit of drag at solid boundaries.

Type
JFM Papers
Copyright
© 2019 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Akiki, G., Jackson, T. L. & Balachandar, S. 2017 Pairwise interaction extended point-particle model for a random array of monodisperse spheres. J. Fluid Mech. 813, 882928.Google Scholar
Balachandar, S. & Eaton, J. K. 2010 Turbulent dispersed multiphase flow. Annu. Rev. Fluid Mech. 42, 111133.Google Scholar
Battista, F., Gualtieri, P., Mollicone, J.-P. & Casciola, C. M. 2018 Application of the exact regularized point particle method (erpp) to particle laden turbulent shear flows in the two-way coupling regime. Intl J. Multiphase Flow 101, 113124.Google Scholar
Battista, F., Picano, F. & Casciola, C. M. 2014 Turbulent mixing of a slightly supercritical van der waals fluid at low-mach number. Phys. Fluids 26 (5), 055101.Google Scholar
Battista, F., Picano, F., Troiani, G. & Casciola, C. M. 2011 Intermittent features of inertial particle distributions in turbulent premixed flames. Phys. Fluids 23 (12), 123304.Google Scholar
Bec, J., Biferale, L., Cencini, M., Lanotte, A., Musacchio, S. & Toschi, F. 2007 Heavy particle concentration in turbulence at dissipative and inertial scales. Phys. Rev. Lett. 98 (8), 084502.Google Scholar
Benfatto, G. & Pulvirenti, M. 1984 Generation of vorticity near the boundary in planar Navier–Stokes flows. Commun. Math. Phys. 96 (1), 5995.Google Scholar
Bijlard, M. J., Oliemans, R. V. A., Portela, L. M. & Ooms, G. 2010 Direct numerical simulation analysis of local flow topology in a particle-laden turbulent channel flow. J. Fluid Mech. 653, 3556.Google Scholar
Blake, J. R. & Chwang, A. T. 1974 Fundamental singularities of viscous flow. J. Engng Maths 8 (1), 2329.Google Scholar
Boivin, M., Simonin, O. & Squires, K. D. 1998 Direct numerical simulation of turbulence modulation by particles in isotropic turbulence. J. Fluid Mech. 375, 235263.Google Scholar
Borée, J. & Caraman, N. 2005 Dilute bidispersed tube flow: role of interclass collisions at increased loadings. Phys. Fluids 17 (5), 055108.Google Scholar
Breugem, W.-P. 2012 A second-order accurate immersed boundary method for fully resolved simulations of particle-laden flows. J. Comput. Phys. 231 (13), 44694498.Google Scholar
Buhre, B. J. P., Elliott, L. K., Sheng, C. D., Gupta, R. P. & Wall, T. F. 2005 Oxy-fuel combustion technology for coal-fired power generation. Prog. Energy Combust. Sci. 31 (4), 283307.Google Scholar
Capecelatro, J. & Desjardins, O. 2013 An euler–lagrange strategy for simulating particle-laden flows. J. Comput. Phys. 238, 131.Google Scholar
Caporaloni, M., Tampieri, F., Trombetti, F. & Vittori, O. 1975 Transfer of particles in nonisotropic air turbulence. J. Atmos. Sci. 32 (3), 565568.Google Scholar
Caraman, N., Borée, J. & Simonin, O. 2003 Effect of collisions on the dispersed phase fluctuation in a dilute tube flow: experimental and theoretical analysis. Phys. Fluids 15 (12), 36023612.Google Scholar
Casciola, C. M., Piva, R. & Bassanini, P. 1996 Vorticity generation on a flat surface in 3d flows. J. Comput. Phys. 129 (2), 345356.Google Scholar
Chorin, A. J. 1968 Numerical solution of the Navier–Stokes equations. Maths Comput. 22 (104), 745762.Google Scholar
Costa, P., Picano, F., Brandt, L. & Breugem, W.-P. 2018 Effects of the finite particle size in turbulent wall-bounded flows of dense suspensions. J. Fluid Mech. 843, 450478.Google Scholar
Costantini, R., Mollicone, J.-P. & Battista, F. 2018 Drag reduction induced by superhydrophobic surfaces in turbulent pipe flow. Phys. Fluids 30 (2), 025102.Google Scholar
Crowe, C. T., Sharma, M. P. & Stock, D. E. 1977 The particle-source-in cell (PSI-CELL) model for gas-droplet flows. Trans. ASME J. Fluids Engng 99 (2), 325332.Google Scholar
De Marchis, M. & Milici, B. 2016 Turbulence modulation by micro-particles in smooth and rough channels. Phys. Fluids 28 (11), 115101.Google Scholar
Dritselis, C. D. & Vlachos, N. S. 2008 Numerical study of educed coherent structures in the near-wall region of a particle-laden channel flow. Phys. Fluids 20 (5), 055103.Google Scholar
Dritselis, C. D. & Vlachos, N. S. 2011 Numerical investigation of momentum exchange between particles and coherent structures in low re turbulent channel flow. Phys. Fluids 23 (2), 025103.Google Scholar
Eidelman, A., Elperin, T., Kleeorin, N., Hazak, G., Rogachevskii, I., Sadot, O. & Sapir-Katiraie, I. 2009 Mixing at the external boundary of a submerged turbulent jet. Phys. Rev. E 79 (2), 026311.Google Scholar
Elghobashi, S. 1994 On predicting particle-laden turbulent flows. Appl. Sci. Res. 52 (4), 309329.Google Scholar
Elghobashi, S. 2019 Direct numerical simulation of turbulent flows laden with droplets or bubbles. Annu. Rev. Fluid Mech. 51, 217244.Google Scholar
Fornari, W., Brandt, L., Chaudhuri, P., Lopez, C. U., Mitra, D. & Picano, F. 2016a Rheology of confined non-brownian suspensions. Phys. Rev. Lett. 116 (1), 018301.Google Scholar
Fornari, W., Picano, F. & Brandt, L. 2016b Sedimentation of finite-size spheres in quiescent and turbulent environments. J. Fluid Mech. 788, 640669.Google Scholar
Fukagata, K., Iwamoto, K. & Kasagi, N. 2002 Contribution of Reynolds stress distribution to the skin friction in wall-bounded flows. Phys. Fluids 14 (11), L73L76.Google Scholar
Gatignol, R. 1983 The Faxén formulas for a rigid particle in an unsteady non-uniform Stokes-flow. J. de Mécanique théorique et appliquée 2 (2), 143160.Google Scholar
Goto, S. & Vassilicos, J. C. 2006 Self-similar clustering of inertial particles and zero-acceleration points in fully developed two-dimensional turbulence. Phys. Fluids 18 (11), 115103.Google Scholar
Gualtieri, P., Battista, F. & Casciola, C. M. 2017 Turbulence modulation in heavy-loaded suspensions of tiny particles. Phys. Rev. Fluids 2 (3), 034304.Google Scholar
Gualtieri, P., Picano, F., Sardina, G. & Casciola, C. M. 2013 Clustering and turbulence modulation in particle-laden shear flow. J. Fluid Mech. 715, 134162.Google Scholar
Gualtieri, P., Picano, F., Sardina, G. & Casciola, C. M. 2015 Exact regularized point particle method for multiphase flows in the two-way coupling regime. J. Fluid Mech. 773, 520561.Google Scholar
Hadinoto, K., Jones, E. N., Yurteri, C. & Curtis, J. S. 2005 Reynolds number dependence of gas-phase turbulence in gas–particle flows. Intl J. Multiphase Flow 31 (4), 416434.Google Scholar
Happel, J. & Brenner, H. 2012 Low Reynolds Number Hydrodynamics: With Special Applications to Particulate Media, vol. 1. Springer Science & Business Media.Google Scholar
der Hoef, M. A. V., Annald, M. V. S., Deen, N. G. & Kuipers, J. A. M. 2008 Numerical simulations of dense gas–solid fluidized beds: a multiscale modeling strategy. Annu. Rev. Fluid Mech. 40, 4770.Google Scholar
Horwitz, J. A. K. & Mani, A. 2016 Accurate calculation of Stokes drag for point–particle tracking in two-way coupled flows. J. Comput. Phys. 318, 85109.Google Scholar
Horwitz, J. & Mani, A. 2018 Correction scheme for point-particle models applied to a nonlinear drag law in simulations of particle-fluid interaction. Intl J. Multiphase Flow 101, 7484.Google Scholar
Hwang, Y. & Cossu, C. 2010 Self-sustained process at large scales in turbulent channel flow. Phys. Rev. Lett. 105 (4), 044505.Google Scholar
Innocenti, A., Marchioli, C. & Chibbaro, S. 2016 Lagrangian filtered density function for les-based stochastic modelling of turbulent particle-laden flows. Phys. Fluids 28 (11), 115106.Google Scholar
Ireland, P. J. & Desjardins, O. 2017 Improving particle drag predictions in euler–lagrange simulations with two-way coupling. J. Comput. Phys. 338, 405430.Google Scholar
Jacob, B., Casciola, C. M., Talamelli, A. & Alfredsson, P. H. 2008 Scaling of mixed structure functions in turbulent boundary layers. Phys. Fluids 20 (4), 045101.Google Scholar
Jenny, P., Roekaerts, D. & Beishuizen, N. 2012 Modeling of turbulent dilute spray combustion. Prog. Energy Combust. Sci. 38 (6), 846887.Google Scholar
Kaftori, D., Hetsroni, G. & Banerjee, S. 1995a Particle behavior in the turbulent boundary layer. I. Motion, deposition, and entrainment. Phys. Fluids 7 (5), 10951106.Google Scholar
Kaftori, D., Hetsroni, G. & Banerjee, S. 1995b Particle behavior in the turbulent boundary layer. II. Velocity and distribution profiles. Phys. Fluids 7 (5), 11071121.Google Scholar
Kaftori, D., Hetsroni, G. & Banerjee, S. 1998 The effect of particles on wall turbulence. Intl J. Multiphase Flow 24 (3), 359386.Google Scholar
Kostinski, A. B. & Shaw, R. A. 2001 Scale-dependent droplet clustering in turbulent clouds. J. Fluid Mech. 434, 389398.Google Scholar
Kulick, J. D., Fessler, J. R. & Eaton, J. K. 1994 Particle response and turbulence modification in fully developed channel flow. J. Fluid Mech. 277, 109134.Google Scholar
Lau, T. C. W. & Nathan, G. J. 2016 The effect of Stokes number on particle velocity and concentration distributions in a well-characterised, turbulent, co-flowing two-phase jet. J. Fluid Mech. 809, 72110.Google Scholar
Lee, J. & Lee, C. 2015 Modification of particle-laden near-wall turbulence: effect of Stokes number. Phys. Fluids 27 (2), 023303.Google Scholar
Li, D., Luo, K. & Fan, J. 2016a Modulation of turbulence by dispersed solid particles in a spatially developing flat-plate boundary layer. J. Fluid Mech. 802, 359394.Google Scholar
Li, D., Wei, A., Luo, K. & Fan, J. 2016b Direct numerical simulation of a particle-laden flow in a flat plate boundary layer. Intl J. Multiphase Flow 79, 124143.Google Scholar
Li, J., Wang, H., Liu, Z., Chen, S. & Zheng, C. 2012 An experimental study on turbulence modification in the near-wall boundary layer of a dilute gas-particle channel flow. Exp. Fluids 53 (5), 13851403.Google Scholar
Li, Y., McLaughlin, J. B., Kontomaris, K. & Portela, L. 2001 Numerical simulation of particle-laden turbulent channel flow. Phys. Fluids 13 (10), 29572967.Google Scholar
Ljus, C., Johansson, B. & Almstedt, A.-E. 2002 Turbulence modification by particles in a horizontal pipe flow. Intl J. Multiphase Flow 28 (7), 10751090.Google Scholar
Marchioli, C. 2017 Large-eddy simulation of turbulent dispersed flows: a review of modelling approaches. Acta Mechanica 228 (3), 741771.Google Scholar
Marchioli, C. & Soldati, A. 2002 Mechanisms for particle transfer and segregation in a turbulent boundary layer. J. Fluid Mech. 468, 283315.Google Scholar
Marmottant, P. & Villermaux, E. 2004 On spray formation. J. Fluid Mech. 498, 73111.Google Scholar
Marusic, I., McKeon, B. J., Monkewitz, P. A., Nagib, H. M., Smits, A. J. & Sreenivasan, K. R. 2010 Wall-bounded turbulent flows at high Reynolds numbers: recent advances and key issues. Phys. Fluids 22 (6), 065103.Google Scholar
Marusic, I., Monty, J. P., Hultmark, M. & Smits, A. J. 2013 On the logarithmic region in wall turbulence. J. Fluid Mech. 716, R1.Google Scholar
Mathis, R., Hutchins, N. & Marusic, I. 2009 Large-scale amplitude modulation of the small-scale structures in turbulent boundary layers. J. Fluid Mech. 628, 311337.Google Scholar
Maxey, M. R. & Riley, J. J. 1983 Equation of motion for a small rigid sphere in a nonuniform flow. Phys. Fluids 26, 2437.Google Scholar
Meyer, D. W. 2012 Modelling of turbulence modulation in particle-or droplet-laden flows. J. Fluid Mech. 706, 251273.Google Scholar
Mollicone, J.-P., Battista, F., Gualtieri, P. & Casciola, C. M. 2018 Turbulence dynamics in separated flows: the generalised Kolmogorov equation for inhomogeneous anisotropic conditions. J. Fluid Mech. 841, 10121039.Google Scholar
Morton, B. R. 1984 The generation and decay of vorticity. Geophys. Astrophys. Fluid Dyn. 28 (3-4), 277308.Google Scholar
Pan, Y. & Banerjee, S. 1997 Numerical investigation of the effects of large particles on wall-turbulence. Phys. Fluids 9 (12), 37863807.Google Scholar
Peirano, E., Chibbaro, S., Pozorski, J. & Minier, J.-P. 2006 Mean-field/pdf numerical approach for polydispersed turbulent two-phase flows. Prog. Energy Combust. Sci. 32 (3), 315371.Google Scholar
Picano, F., Battista, F., Troiani, G. & Casciola, C. M. 2011 Dynamics of piv seeding particles in turbulent premixed flames. Exp. Fluids 50 (1), 7588.Google Scholar
Picano, F., Sardina, G. & Casciola, C. M. 2009 Spatial development of particle-laden turbulent pipe flow. Phys. Fluids 21 (9), 093305.Google Scholar
Picciotto, M., Giusti, A., Marchioli, C. & Soldati, A. 2006 Turbulence modulation by micro-particles in boundary layers. In IUTAM Symposium on Computational Approaches to Multiphase Flow, pp. 5362. Springer.Google Scholar
Piva, R. & Morino, L. 1987 Vector green’s function method for unsteady Navier–Stokes equations. Meccanica 22 (2), 7685.Google Scholar
Pope, S. B. 2001 Turbulent Flows. IOP Publishing.Google Scholar
Post, S. L. & Abraham, J. 2002 Modeling the outcome of drop–drop collisions in diesel sprays. Intl J. Multiphase Flow 28 (6), 9971019.Google Scholar
Rani, S. L., Winkler, C. M. & Vanka, S. P. 2004 Numerical simulations of turbulence modulation by dense particles in a fully developed pipe flow. Powder Technol. 141 (1), 8099.Google Scholar
Rannacher, R. 1992 On chorin’s projection method for the incompressible Navier–Stokes equations. In The Navier–Stokes Equations II—Theory and Numerical Methods, pp. 167183. Springer.Google Scholar
Reeks, M. W. 1983 The transport of discrete particles in inhomogeneous turbulence. J. Aero. Sci. 14 (6), 729739.Google Scholar
Richter, D. H. & Sullivan, P. P. 2014 Modification of near-wall coherent structures by inertial particles. Phys. Fluids 26 (10), 103304.Google Scholar
Righetti, M. & Romano, G. P. 2004 Particle–fluid interactions in a plane near-wall turbulent flow. J. Fluid Mech. 505, 93121.Google Scholar
Sardina, G., Picano, F., Schlatter, P., Brandt, L. & Casciola, C. M. 2011 Large scale accumulation patterns of inertial particles in wall-bounded turbulent flow. Flow Turbul. Combust. 86 (3-4), 519532.Google Scholar
Sardina, G., Schlatter, P., Brandt, L., Picano, F. & Casciola, C. M. 2012a Wall accumulation and spatial localization in particle-laden wall flows. J. Fluid Mech. 699, 5078.Google Scholar
Sardina, G., Schlatter, P., Picano, F., Casciola, C. M., Brandt, L. & Henningson, D. S. 2012b Self-similar transport of inertial particles in a turbulent boundary layer. J. Fluid Mech. 706, 584596.Google Scholar
Soldati, A. & Marchioli, C. 2009 Physics and modelling of turbulent particle deposition and entrainment: review of a systematic study. Intl J. Multiphase Flow 35 (9), 827839.Google Scholar
Stakgold, I. 2000 Boundary Value Problems of Mathematical Physics, vol. 2. SIAM.Google Scholar
Toschi, F. & Bodenschatz, E. 2009 Lagrangian properties of particles in turbulence. Annu. Rev. Fluid Mech. 41, 375404.Google Scholar
Tsuji, Y., Morikawa, Y. & Shiomi, H. 1984 LDV measurements of an air-solid two-phase flow in a vertical pipe. J. Fluid Mech. 139, 417434.Google Scholar
Uhlmann, M. 2005 An immersed boundary method with direct forcing for the simulation of particulate flows. J. Comput. Phys. 209 (2), 448476.Google Scholar
Vreman, A. W. 2007 Turbulence characteristics of particle-laden pipe flow. J. Fluid Mech. 584, 235279.Google Scholar
Vreman, A. W. 2015 Turbulence attenuation in particle-laden flow in smooth and rough channels. J. Fluid Mech. 773, 103.Google Scholar
Wang, L. P., Rosa, B., Gao, H., He, G. & Jin, G. 2009 Turbulent collision of inertial particles: point-particle based, hybrid simulations and beyond. Intl J. Multiphase Flow 35 (9), 854867.Google Scholar
Wu, Y., Wang, H., Liu, Z., Li, J., Zhang, L. & Zheng, C. 2006 Experimental investigation on turbulence modification in a horizontal channel flow at relatively low mass loading. Acta Mechanica Sin. 22 (2), 99108.Google Scholar
Yamamoto, Y. & Okawa, T. 2010 Numerical study of particle concentration effect on deposition characteristics in turbulent pipe flows. J. Nuclear Sci. Technol. 47 (10), 945952.Google Scholar
Young, J. & Leeming, A. 1997 A theory of particle deposition in turbulent pipe flow. J. Fluid Mech. 340, 129159.Google Scholar
Zhao, L. H., Andersson, H. I. & Gillissen, J. J. 2010 Turbulence modulation and drag reduction by spherical particles. Phys. Fluids 22 (8), 081702.Google Scholar
Zhao, L., Andersson, H. I. & Gillissen, J. J. J. 2013 Interphasial energy transfer and particle dissipation in particle-laden wall turbulence. J. Fluid Mech. 715, 32.Google Scholar