Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-12T00:42:36.263Z Has data issue: false hasContentIssue false

Evolution of a shock generated by an impulsively accelerated, sinusoidal piston

Published online by Cambridge University Press:  26 November 2020

N. Shen*
Affiliation:
Graduate Aerospace Laboratories, California Institute of Technology, Pasadena, CA91125, USA
D. I. Pullin
Affiliation:
Graduate Aerospace Laboratories, California Institute of Technology, Pasadena, CA91125, USA
R. Samtaney
Affiliation:
Mechanical Engineering, Physical Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal23955-6900, Saudi Arabia
V. Wheatley
Affiliation:
School of Mechanical and Mining Engineering, The University of Queensland, St Lucia, QLD4072, Australia
*
Email address for correspondence: nshen@caltech.edu

Abstract

We consider the evolution of a shock wave generated by an impulsively accelerated, two-dimensional, almost planar piston with a sinusoidally corrugated surface of amplitude $\epsilon$. We develop a complex-variable formulation for a nonlinear theory of generalized geometrical shock dynamics (GGSD) (Best, Shock Waves, vol. 1, issue 4, 1991, pp. 251–273; Best, Proc. R. Soc. Lond. A, vol. 442, 1993, pp. 585–598) as a hierarchical expansion of the Euler equations that can be closed at any order. The zeroth-order truncation of GGSD is related to the equations of Whitham's geometrical shock dynamics (GSD), while higher-order corrections incorporate non-uniformity of the flow immediately behind the piston-driven shock. Numerical solutions to GGSD systems up to second order are coupled to an edge-detection algorithm in order to investigate the hypothesized development of a shock-shape curvature singularity as the rippled shock evolves. This singular behaviour, together with the simultaneous development of a Mach-number discontinuity, is found at all orders of the GGSD hierarchy for both weak and strong shocks. The critical time at which a curvature singularity occurs converges as the order of the GGSD system increases at fixed $\epsilon$, and follows a scaling inversely proportional to $\epsilon$ at sufficiently small values. This result agrees with the weakly nonlinear GSD analysis of Mostert et al. (J. Fluid Mech., vol. 846, 2018, pp. 536–562) for a general Mach-number perturbation on a planar shock, and suggests that this represents the universal behaviour of a slightly perturbed, planar shock.

Type
JFM Papers
Copyright
© The Author(s), 2020. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bates, J. W. 2012 On the theory of a shock wave driven by a corrugated piston in a non-ideal fluid. J. Fluid Mech. 691, 146164.10.1017/jfm.2011.463CrossRefGoogle Scholar
Bates, J. W. 2015 Theory of the corrugation instability of a piston-driven shock wave. Phys. Rev. E 91 (1), 16.10.1103/PhysRevE.91.013014CrossRefGoogle ScholarPubMed
Best, J. P. 1991 A generalisation of the theory of geometrical shock dynamics. Shock Waves 1 (4), 251273.10.1007/BF01418882CrossRefGoogle Scholar
Best, J. P. 1993 Accounting for transverse flow in the theory of geometrical shock dynamics. Proc. R. Soc. Lond. A 442 (1916), 585598.Google Scholar
Briscoe, M. G. & Kovitz, A. A. 1968 Experimental and theoretical study of the stability of plane shock waves reflected normally from perturbed flat walls. J. Fluid Mech. 31 (3), 529546.10.1017/S0022112068000315CrossRefGoogle Scholar
Clavin, P. 2013 Nonlinear analysis of shock–vortex interaction: mach stem formation. J. Fluid Mech. 721, 324339.10.1017/jfm.2013.69CrossRefGoogle Scholar
Clavin, P. & Denet, B. 2002 Diamond patterns in the cellular front of an overdriven detonation. Phys. Rev. Lett. 88 (4), 044502.10.1103/PhysRevLett.88.044502CrossRefGoogle ScholarPubMed
Courant, R. & Friedrichs, K. O. 1999 Supersonic Flow and Shock Waves, vol. 21. Springer Science and Business Media.Google Scholar
Denet, B., Biamino, L., Lodato, G., Vervisch, L. & Clavin, P. 2015 Model equation for the dynamics of wrinkled shockwaves: comparison with DNS and experiments. Combust. Sci. Technol. 187 (1–2), 296323.10.1080/00102202.2014.973494CrossRefGoogle Scholar
Drake, R. P., Glendinning, S. G., Estabrook, Kent, Remington, B. A., McCray, Richard, Wallace, R. J., Suter, L. J., Smith, T. B., Carroll, J. J., London, R. A. et al. . 1998 Observation of forward shocks and stagnated ejecta driven by high-energy-density plasma flow. Phys. Rev. Lett. 81 (10), 20682071.CrossRefGoogle Scholar
D'yakov, S. P. 1954 Shock wave stability. Zh. Eksp. Teor. Fiz. 27 (3), 288295.Google Scholar
Eggers, J., Grava, T., Herrada, M. A. & Pitton, G. 2017 Spatial structure of shock formation. J. Fluid Mech. 820, 208231.CrossRefGoogle Scholar
Emanuel, G. 2016 Analytic Fluid Dynamics, 3rd edn. CRC Press.Google Scholar
Emanuel, G. 2019 Derivatives on the downstream side of a moving, curved shock. J. Engng Maths 117 (1), 79105.CrossRefGoogle Scholar
Faria, L. M., Kasimov, A. R. & Rosales, R. R. 2015 Theory of weakly nonlinear self-sustained detonations. J. Fluid Mech.CrossRefGoogle Scholar
Freeman, N. C. 1955 A theory of the stability of plane shock waves. Proc. R. Soc. Lond. A 228 (1174), 341362.Google Scholar
Freeman, N. C. 1957 On the stability of plane shock waves. J. Fluid Mech. 2 (4), 397411.CrossRefGoogle Scholar
Gelb, A. & Cates, D. 2008 Detection of edges in spectral data III–refinement of the concentration method. J. Sci. Comput. 36 (1), 143.CrossRefGoogle Scholar
Gelb, A. & Tadmor, E. 2000 Detection of edges in spectral data II. Nonlinear enhancement. SIAM J. Numer. Anal. 38 (4), 13891408.CrossRefGoogle Scholar
Gelb, A. & Tadmor, E. 2006 Adaptive edge detectors for piecewise smooth data based on the minmod limiter. J. Sci. Comput. 28 (2–3), 279306.CrossRefGoogle Scholar
Hoefer, M. A., Ablowitz, M. J. & Engels, P. 2008 Piston dispersive shock wave problem. Phys. Rev. Lett. 100 (8), 084504.CrossRefGoogle ScholarPubMed
Hornung, H. G. 2010 Deriving features of reacting hypersonic flow from gradients at a curved shock. AIAA J. 48 (2), 287296.CrossRefGoogle Scholar
Kanwal, R. P. 1957 Determination of the vorticity and the gradients of flow parameters behind a three-dimensional unsteady curved shock wave. Arch. Rat. Mech. Anal. 1 (1), 225232.CrossRefGoogle Scholar
Katko, B. J., Chavez, R., Liu, H., Lawlor, B., McGuire, C., Zheng, L., Zanteson, J. & Eliasson, V. 2020 Experimental and numerical study of blast-structure interaction. In Structures Congress 2020, pp. 105–118. American Society of Civil Engineers.CrossRefGoogle Scholar
Lapworth, K. C. 1959 An experimental investigation of the stability of plane shock waves. J. Fluid Mech. 6 (3), 469480.CrossRefGoogle Scholar
Lele, S. K. 1992 Compact finite difference schemes with spectral-like resolution. J. Comput. Phys. 103 (1), 1642.CrossRefGoogle Scholar
Lighthill, M. J. 1949 The diffraction of blast. I. Proc. R. Soc. Lond. A 198 (1055), 454470.Google Scholar
Lighthill, M. J. 1950 The diffraction of blast. II. Proc. R. Soc. Lond. A 200 (1063), 554565.Google Scholar
Lindl, J., Landen, O., Edwards, J., Moses, E., NIC team 2014 Review of the national ignition campaign 2009–2012. Phys. Plasmas 21 (2), 020501.CrossRefGoogle Scholar
Lodato, G., Vervisch, L. & Clavin, P. 2016 Direct numerical simulation of shock wavy-wall interaction: analysis of cellular shock structures and flow patterns. J. Fluid Mech. 789, 221258.CrossRefGoogle Scholar
Lodato, G., Vervisch, L. & Clavin, P. 2017 Numerical study of smoothly perturbed shocks in the newtonian limit. Flow Turbul. Combust. 99 (3-4), 887908.CrossRefGoogle Scholar
Majda, A. & Rosales, R. 1983 A theory for spontaneous mach stem formation in reacting shock fronts, I. The basic perturbation analysis. SIAM J. Appl. Math. 43 (6), 13101334.CrossRefGoogle Scholar
Matsui, N., Mima, K., Honda, M. & Nishiguchi, A. 1999 Analysis of rippled shock-wave propagation and ablation-front stability by theory and hydrodynamic simulation. J. Plasma Phys. 61 (1), 4350.CrossRefGoogle Scholar
Maxwell, A., Dryer, M. & McIntosh, P. 1985 A piston-driven shock in the solar corona. Solar Phys. 97 (2), 401413.CrossRefGoogle Scholar
Mölder, S. 2016 Curved Shock Theory. Shock Waves 26 (4), 337353.CrossRefGoogle Scholar
Mostert, W, Pullin, D. I., Samtaney, R. & Wheatley, V. 2017 Geometrical shock dynamics for magnetohydrodynamic fast shocks. J. Fluid Mech. 811, R2.CrossRefGoogle Scholar
Mostert, W., Pullin, D. I., Samtaney, R. & Wheatley, V. 2018 a Singularity formation on perturbed planar shock waves. J. Fluid Mech. 846, 536562.CrossRefGoogle Scholar
Mostert, W., Pullin, D. I., Samtaney, R. & Wheatley, V. 2018 b Spontaneous singularity formation in converging cylindrical shock waves. Phys. Rev. Fluids 3 (7), 071401.CrossRefGoogle Scholar
Pant, J. C. 1969 Some aspects of unsteady curved shock waves. Intl J. Engng Sci. 7 (2), 235245.CrossRefGoogle Scholar
Strehlow, R. A. & Fernandes, F. D. 1965 Transverse waves in detonations. Combust. Flame. 9 (2), 109119.CrossRefGoogle Scholar
Thomas, T. Y. 1947 On curved shock waves. J. Maths Phys. 26 (1–4), 6268.CrossRefGoogle Scholar
Van Moorhem, W. K. & George, A. R. 1975 On the stability of plane shocks. J. Fluid Mech. 68 (1), 97108.CrossRefGoogle Scholar
Wan, Q., Jeon, H., Deiterding, R. & Eliasson, V. 2017 Numerical and experimental investigation of oblique shock wave reflection off a water wedge. J. Fluid Mech. 826, 732758.CrossRefGoogle Scholar
Whitham, G. B. 1957 A new approach to problems of shock dynamics. Part 1. Two-dimensional problems. J. Fluid Mech. 2 (2), 145171.CrossRefGoogle Scholar
Whitham, G. B. 2011 Linear and Nonlinear Waves, vol. 42. John Wiley and Sons.Google Scholar
Zaidel, R. M. 1967 Development of perturbations in plane shock waves. J. Appl. Mech. Tech. Phys. 8, 2025.CrossRefGoogle Scholar