Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-25T22:01:36.979Z Has data issue: false hasContentIssue false

Estimating thrust from shedding vortex surfaces in the wake of a flapping plate

Published online by Cambridge University Press:  04 June 2021

Wenwen Tong
Affiliation:
State Key Laboratory for Turbulence and Complex Systems, College of Engineering, Peking University, Beijing100871, PR China
Yue Yang*
Affiliation:
State Key Laboratory for Turbulence and Complex Systems, College of Engineering, Peking University, Beijing100871, PR China CAPT and BIC-ESAT, Peking University, Beijing100871, PR China
Shizhao Wang
Affiliation:
LNM, Institute of Mechanics, Chinese Academy of Sciences, Beijing100190, PR China School of Engineering Sciences, University of Chinese Academy of Sciences, Beijing100049, PR China
*
Email address for correspondence: yyg@pku.edu.cn

Abstract

We elucidate the vortex dynamics of flows past a flapping plate using the vortex-surface field (VSF) and develop models for estimating thrust from shedding vortex surfaces in wakes. The VSF evolution is calculated from numerical simulation using the immersed boundary method. The VSF visualization reveals that a spoon-like vortex surface dominated by tip vortex lines is formed and periodically shed into the wake owing to the alternating upstroke and downstroke of the flapping plate. We simplify the finite-domain impulse theory based on a particular vortex surface. The simplified theory demonstrates that the force on the plate is only dependent on the vortical impulse and Lamb-vector integral of the vortex surface enclosing the plate. Then, we propose a time-averaged thrust model from near-wake discrete vortex surfaces, where the incorporation of the Lamb-vector integral significantly improves the model estimation from the impulse model. Furthermore, we estimate the mean thrust based on two arbitrary vortex surfaces in the far wake from the linear impulse decay of periodically shedding vortex surfaces, which provides a possible approach to infer the state of the moving body in experimental investigation and practical applications.

Type
JFM Papers
Copyright
© The Author(s), 2021. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bhat, S.S., Zhao, J., Sheridan, J., Hourigan, K. & Thompson, M.C. 2020 Effects of flapping-motion profiles on insect-wing aerodynamics. J. Fluid Mech. 884, A8.CrossRefGoogle Scholar
Birch, J.M. & Dickinson, M.H. 2003 The influence of wing-wake interactions on the production of aerodynamic forces in flapping flight. J. Expl Biol. 206, 22572272.CrossRefGoogle ScholarPubMed
Blondeaux, P., Fornarelli, F., Guglielmini, L., Triantafyllou, M.S. & Verzicco, R. 2005 Numerical experiments on flapping foils mimicking fish-like locomotion. Phys. Fluids 17, 113601.CrossRefGoogle Scholar
Buchholz, J.H.J. & Smits, A.J. 2006 On the evolution of the wake structure produced by a low-aspect-ratio pitching panel. J. Fluid Mech. 546, 433443.CrossRefGoogle Scholar
Buchholz, J.H.J. & Smits, A.J. 2008 The wake structure and thrust performance of a rigid low-aspect-ratio pitching panel. J. Fluid Mech. 603, 331365.CrossRefGoogle ScholarPubMed
Buchner, A.-J., Honnery, D. & Soria, J. 2017 Stability and three-dimensional evolution of a transitional dynamic stall vortex. J. Fluid Mech. 823, 166197.CrossRefGoogle Scholar
Burgers, J.M. 1920 On the resistance of fluids and vortex motion. Proc. K. Akad. Wet. Amsterdam 23, 774782.Google Scholar
Chang, C.C. 1992 Potential flow and forces for incompressible viscous flow. Proc. R. Soc. Lond. A 437, 517525.Google Scholar
Chen, Y., Ryu, J., Liu, Y. & Sung, H.J. 2020 Flapping dynamics of vertically clamped three-dimensional flexible flags in a Poiseuille flow. Phys. Fluids 32, 071905.CrossRefGoogle Scholar
Dabiri, J.O. 2005 On the estimation of swimming and flying forces from wake measurements. J. Expl Biol. 208, 35193532.CrossRefGoogle ScholarPubMed
Dabiri, J.O. 2009 Optimal vortex formation as a unifying principle in biological propulsion. Annu. Rev. Fluid Mech. 41, 1733.CrossRefGoogle Scholar
Dong, H., Mittal, R. & Najjar, F.M. 2006 Wake topology and hydrodynamic performance of low-aspect-ratio flapping foils. J. Fluid Mech. 566, 309343.CrossRefGoogle Scholar
Drucker, E.G. & Lauder, G.V. 1999 Locomotor forces on a swimming fish: three-dimensional vortex wake dynamics quantified using digital particle image velocimetry. J. Expl Biol. 202, 23932412.CrossRefGoogle ScholarPubMed
Franke, R. 1982 Scattered data interpolation: tests of some methods. Math. Comput. 38, 181200.Google Scholar
Gharib, M., Rambod, E. & Shariff, K. 1998 A universal time scale for vortex ring formation. J. Fluid Mech. 360, 121140.CrossRefGoogle Scholar
Hedenström, A., Johansson, L.C., Wolf, M., von Busse, R., Winter, Y. & Spedding, G.R. 2007 Bat flight generates complex aerodynamic tracks. Science 316, 894897.CrossRefGoogle ScholarPubMed
Hedenström, A., Rosén, M. & Spedding, G.R. 2006 Vortex wakes generated by robins Erithacus rubecula during free flight in a wind tunnel. J. R. Soc. Interface 3, 263276.CrossRefGoogle Scholar
Hubel, T.Y., Riskin, D.K., Swartz, S.M. & Breuer, K.S. 2010 Wake structure and wing kinematics: the flight of the lesser dog-faced fruit bat, Cynopterus brachyotis. J. Expl Biol. 213, 34273440.CrossRefGoogle ScholarPubMed
Hunt, J.C.R., Wray, A.A. & Moin, P. 1988 Eddies, streams, and convergence zones in turbulent flows. In Proceedings of Summer Program 1988, pp. 193–208. Center for Turbulence Research, Stanford University.Google Scholar
Jeong, J. & Hussain, F. 1995 On the identification of a vortex. J. Fluid Mech. 285, 6994.CrossRefGoogle Scholar
Jiménez, J.M., Hultmark, M. & Smits, A.J. 2010 The intermediate wake of a body of revolution at high Reynolds numbers. J. Fluid Mech. 659, 516539.CrossRefGoogle Scholar
Kang, L.L., Liu, L.Q., Su, W.D. & Wu, J.Z. 2018 Minimum-domain impulse theory for unsteady aerodynamic force. Phys. Fluids 30, 016107.CrossRefGoogle Scholar
King, J.T., Kumar, R. & Green, M.A. 2018 Experimental observations of the three-dimensional wake structures and dynamics generated by a rigid, bioinspired pitching panel. Phys. Rev. Fluids 3, 034701.CrossRefGoogle Scholar
Lauder, G.V. 2015 Fish locomotion: recent advances and new directions. Annu. Rev. Mar. Sci. 7, 521545.CrossRefGoogle ScholarPubMed
Lauder, G.V. & Drucker, E.G. 2002 Forces, fishes, and fluids: hydrodynamic mechanisms of aquatic locomotion. News Physiol. Sci. 17, 235240.Google ScholarPubMed
Lee, J., Park, Y.-J., Jeong, U., Cho, K.-J. & Kim, H.-Y. 2013 Wake and thrust of an angularly reciprocating plate. J. Fluid Mech. 720, 545557.CrossRefGoogle Scholar
Lee, J.-J., Hsieh, C.-T., Chang, C.C. & Chu, C.-C. 2012 Vorticity forces on an impulsively started finite plate. J. Fluid Mech. 694, 464492.CrossRefGoogle Scholar
Li, C. & Dong, H. 2016 Three-dimensional wake topology and propulsive performance of low-aspect-ratio pitching-rolling plates. Phys. Fluids 28, 071901.CrossRefGoogle Scholar
Li, C., Dong, H. & Liang, Z. 2016 Proper orthogonal decomposition analysis of 3-D wake structures in a pitching-rolling plate. AIAA Paper 2016-2071.CrossRefGoogle Scholar
Li, G.-J. & Lu, X.-Y. 2012 Force and power of flapping plates in a fluid. J. Fluid Mech. 712, 598613.CrossRefGoogle Scholar
Lighthill, M.J. 1986 An Informal Introduction to Theoretical Fluid Mechanics. Clarendon Press.Google Scholar
Lin, Y.-S., Tzeng, Y.-T., Hsieh, C.-T., Chang, C.C. & Chu, C.-C. 2018 A mechanism of thrust enhancement on a heaving plate due to flexibility at moderately low Reynolds numbers. J. Fluid Struct. 76, 573591.CrossRefGoogle Scholar
Liu, G., Dong, H. & Li, C. 2016 Vortex dynamics and new lift enhancement mechanism of wing-body interaction in insect forward flight. J. Fluid Mech. 795, 634651.CrossRefGoogle Scholar
Mendelson, L. & Techet, A.H. 2015 Quantitative wake analysis of a freely swimming fish using 3D synthetic aperture PIV. Exp. Fluids 56, 135.CrossRefGoogle Scholar
Müeller, U.K., Van den Heuvel, B.L.E., Stamhuis, E.J. & Videler, J.J. 1997 Fish foot prints: morphology and energetics of the wake behind a continuously swimming mullet (Chelon labrosus Risso). J. Expl Biol. 200, 28932906.CrossRefGoogle Scholar
Nauen, J.C. & Lauder, G.V. 2002 Hydrodynamics of caudal fin locomotion by chub mackerel, Scomber japonicus (Scombridae). J. Expl Biol. 205, 17091724.CrossRefGoogle Scholar
Noca, F., Shiels, D. & Jeon, D. 1997 Measuring instantaneous fluid dynamic forces on bodies, using only velocity fields and their derivatives. J. Fluid Struct. 11, 345350.CrossRefGoogle Scholar
Noca, F., Shiels, D. & Jeon, D. 1999 A comparison of methods for evaluating time-dependent fluid dynamic forces on bodies, using only velocity fields and their derivatives. J. Fluid Struct. 13, 551578.CrossRefGoogle Scholar
Oh, S., Lee, B., Park, H., Choi, H. & Kim, S.-T. 2020 A numerical and theoretical study of the aerodynamic performance of a hovering rhinoceros beetle (Trypoxylus dichotomus). J. Fluid Mech. 885, A18.CrossRefGoogle Scholar
Park, H., Park, Y.-J., Lee, B., Cho, K.-J. & Choi, H. 2016 Vortical structures around a flexible oscillating panel for maximum thrust in a quiescent fluid. J. Fluid Struct. 67, 241260.CrossRefGoogle Scholar
Park, S.G., Chang, C.B., Huang, W. -X. & Sung, H.J. 2014 Simulation of swimming oblate jellyfish with a paddling-based locomotion. J. Fluid Mech. 748, 731755.CrossRefGoogle Scholar
Peskin, C.S. 2002 The immersed boundary method. Acta Numerica 11, 479517.CrossRefGoogle Scholar
Phan, H.V. & Park, H.C. 2019 Insect-inspired, tailless, hover-capable flapping-wing robots: recent progress, challenges, and future directions. Prog. Aerosp. Sci. 111, 100573.CrossRefGoogle Scholar
Prandtl, L. 1918 Theory of lifting surface. Nachr. Ges. Wiss. Göttingen 1918, 451477.Google Scholar
Shyy, W., Aono, H., Chimakurthi, S.K., Trizila, P., Kang, C.-K., Cesnik, C.E.S. & Liu, H. 2010 Recent progress in flapping wing aerodynamics and aeroelasticity. Prog. Aerosp. Sci. 46, 284327.CrossRefGoogle Scholar
Spedding, G.R., Rosén, M. & Hedenström, A. 2003 A family of vortex wakes generated by a thrush nightingale in free flight in a wind tunnel over its entire natural range of flight speeds. J. Expl Biol. 206, 23132344.CrossRefGoogle Scholar
Taira, K., Brunton, S.L., Dawson, S.T.M., Rowley, C.W., Colonius, T., McKeon, B.J., Schmidt, O.T., Gordeyev, S., Theofilis, V. & Ukeiley, L.S. 2017 Modal analysis of fluid flows: an overview. AIAA J. 55, 40134041.CrossRefGoogle Scholar
Taira, K. & Colonius, T. 2009 Three-dimensional flows around low-aspect-ratio flat-plate wings at low Reynolds numbers. J. Fluid Mech. 623, 187207.CrossRefGoogle Scholar
Tong, W., Yang, Y. & Wang, S. 2020 Characterizing three-dimensional features of vortex surfaces in the flow past a finite plate. Phys. Fluids 32, 011903.Google Scholar
Wang, C., Gao, Q., Wang, H., Wei, R., Li, T. & Wang, J. 2016 Divergence-free smoothing for volumetric PIV data. Exp. Fluids 57, 15.CrossRefGoogle Scholar
Wang, S., He, G. & Liu, T. 2019 Estimating lift from wake velocity data in flapping flight. J. Fluid Mech. 868, 501537.CrossRefGoogle Scholar
Wang, S., He, G. & Zhang, X. 2015 Lift enhancement on spanwise oscillating flat-plates in low-Reynolds-number flows. Phys. Fluids 27, 061901.CrossRefGoogle Scholar
Wang, S. & Zhang, X. 2011 An immersed boundary method based on discrete stream function formulation for two- and three-dimensional incompressible flows. J. Comput. Phys. 230, 34793499.CrossRefGoogle Scholar
Wang, S., Zhang, X., He, G. & Liu, T. 2013 A lift formula applied to low-Reynolds-number unsteady flows. Phys. Fluids 25, 093605.CrossRefGoogle Scholar
Wang, X.X. & Wu, Z.N. 2010 Stroke-averaged lift forces due to vortex rings and their mutual interactions for a flapping flight model. J. Fluid Mech. 654, 453472.CrossRefGoogle Scholar
Wu, J., Liu, L. & Liu, T. 2018 Fundamental theories of aerodynamic force in viscous and compressible complex flows. Prog. Aerosp. Sci. 99, 2763.CrossRefGoogle Scholar
Wu, J.C. 1981 Theory for aerodynamic force and moment in viscous flows. AIAA J. 19, 432441.CrossRefGoogle Scholar
Wu, J.-Z., Lu, X.-Y. & Zhuang, L.-X. 2007 Integral force acting on a body due to local flow structures. J. Fluid Mech. 576, 265286.CrossRefGoogle Scholar
Wu, J.-Z., Ma, H.-Y. & Zhou, M.-D. 2015 Vortical Flows. Springer.CrossRefGoogle Scholar
Wu, T.Y. 2011 Fish swimming and bird/insect flight. Annu. Rev. Fluid Mech. 43, 2558.CrossRefGoogle Scholar
Xiong, S. & Yang, Y. 2017 The boundary-constraint method for constructing vortex-surface fields. J. Comput. Phys. 339, 3145.CrossRefGoogle Scholar
Xiong, S. & Yang, Y. 2019 Identifying the tangle of vortex tubes in homogeneous isotropic turbulence. J. Fluid Mech. 874, 952978.CrossRefGoogle Scholar
Yang, Y. & Pullin, D.I. 2010 On Lagrangian and vortex-surface fields for flows with Taylor–Green and Kida–Pelz initial conditions. J. Fluid Mech. 661, 446481.CrossRefGoogle Scholar
Yang, Y. & Pullin, D.I. 2011 Evolution of vortex-surface fields in viscous Taylor–Green and Kida–Pelz flows. J. Fluid Mech. 685, 146164.CrossRefGoogle Scholar
Zhao, Y., Yang, Y. & Chen, S. 2016 Vortex reconnection in the late transition in channel flow. J. Fluid Mech. 802, R4.CrossRefGoogle Scholar
Zheng, W., Ruan, S., Yang, Y., He, L. & Chen, S. 2019 Image-based modelling of the skin-friction coefficient in compressible boundary-layer transition. J. Fluid Mech. 875, 11751203.CrossRefGoogle Scholar