Published online by Cambridge University Press: 18 March 2016
The relation between the flux of temperature (or buoyancy), the vertical temperature gradient and the height above the bottom is investigated in an oceanographic context, using high-resolution temperature measurements. The model for the evolution of a stratified layer by Balmforth et al. (J. Fluid Mech., vol. 355, 1998, pp. 329–358) is reviewed and adapted to the case of a turbulent flow above a wall. Model predictions are compared with the average observational estimates of the flux, exploiting a flux estimation method proposed by Winters & D’Asaro (J. Fluid Mech., vol. 317, 1996, pp. 179–193). This estimation method enables the disentanglement of the dependence of the average flux on the height above the bottom and on the background temperature gradient. The classical N-shaped flux–gradient relation is found in the observations. The model and the observations show similar qualitative behaviour, despite the strong simplifications used in the model. The results shed light on the modulation of the temperature flux by the presence of the boundary, and support the idea of a turbulent flux following a mixing-length argument in a stratified flow. Furthermore, the results support the use of Thorpe scales close to a boundary, if sufficient averaging is performed, suggesting that the Thorpe scales are affected by the boundary in a similar way to the mixing length.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.