Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-25T23:51:02.578Z Has data issue: false hasContentIssue false

Equatorial modons in dry and moist-convective shallow-water systems on a rotating sphere

Published online by Cambridge University Press:  06 April 2021

Bowen Zhao*
Affiliation:
Department of Earth and Planetary Sciences, Yale University, 210 Whitney Avenue, New Haven, CT, USA
Vladimir Zeitlin
Affiliation:
Laboratory of Dynamical Meteorology, Sorbonne University (SU), Ecole Normale Supérieure (ENS), CNRS, Paris75231, France
Alexey V. Fedorov
Affiliation:
Department of Earth and Planetary Sciences, Yale University, 210 Whitney Avenue, New Haven, CT, USA LOCEAN/IPSL, Sorbonne University, 4 place Jussieu, Paris75252, France
*
Email address for correspondence: bowen.zhao@yale.edu

Abstract

The adjustment of equatorial pressure anomalies is studied using high-resolution numerical simulations within one- and two-layer shallow-water systems on a rotating sphere, which include a simple self-consistent parameterization of the dynamical effects of condensation (the so-called moist-convective shallow-water equations). A systematic generation of localized, moving eastward along the equator cyclonic pairs, termed the equatorial modons, is observed in the one-layer model for sufficiently intense initial perturbations. The modons are strongly enhanced by the moist convection. In the two-layer model with a relatively small depth ratio, baroclinic equatorial modons are also observed. In both the one-layer model and the baroclinic mode of the two-layer model, the emergence of a transient Gill pattern preceding the generation of modons is demonstrated. It is found that the breaking of circumnavigating moist Kelvin waves, generated in the adjustment process, induces extensive easterly jets, which weaken the eastward nonlinear advection tendency of the modons. Finally, an inductive generation of the modons over oceanic warm-pools, modelled as local humidity maxima, is discovered, and explained on the basis of conservation of moist potential vorticity.

Type
JFM Papers
Copyright
© The Author(s), 2021. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Arnold, N.P. & Randall, D.A. 2015 Global-scale convective aggregation: implications for the Madden–Julian oscillation. J. Adv. Model. Earth Sy. 7 (4), 14991518.CrossRefGoogle Scholar
Baer, F. & Tribbia, J.J. 1977 On complete filtering of gravity modes through nonlinear initialization. Mon. Weath. Rev. 105 (12), 15361539.2.0.CO;2>CrossRefGoogle Scholar
Bouchut, F., Lambaerts, J., Lapeyre, G. & Zeitlin, V. 2009 Fronts and nonlinear waves in a simplified shallow-water model of the atmosphere with moisture and convection. Phys. Fluids 21 (11), 116604.CrossRefGoogle Scholar
Bouchut, F., Le Sommer, J. & Zeitlin, V. 2005 Breaking of balanced and unbalanced equatorial waves. Chaos 15 (1), 013503.CrossRefGoogle ScholarPubMed
Boyd, J.P. 1985 Equatorial solitary waves. Part 3: westward-traveling modons. J. Phys. Oceanogr. 15 (1), 4654.2.0.CO;2>CrossRefGoogle Scholar
Charney, J.G. 1963 A note on large-scale motions in the tropics. J. Atmos. Sci. 20, 607609.2.0.CO;2>CrossRefGoogle Scholar
Emanuel, K. 1993 The effect of convective response time on WISHE modes. J. Atmos. Sci. 50 (12), 17631776.2.0.CO;2>CrossRefGoogle Scholar
Emanuel, K.A. 1987 An air-sea interaction model of intraseasonal oscillations in the tropics. J. Atmos. Sci. 44 (16), 23242340.2.0.CO;2>CrossRefGoogle Scholar
Fedorov, A.V. & Brown, J.N. 2009 Equatorial waves. In Encyclopedia of Ocean Sciences, pp. 271–287. Elsevier.CrossRefGoogle Scholar
Fedorov, A.V. & Melville, W.K. 2000 Kelvin fronts on the equatorial thermocline. J. Phys. Oceanogr. 30 (7), 16921705.2.0.CO;2>CrossRefGoogle Scholar
Flierl, G.R., Larichev, V.D., McWilliams, J.C. & Reznik, G.M. 1980 The dynamics of baroclinic and barotropic solitary eddies. Dyn. Atmos. Oceans 5 (1), 141.CrossRefGoogle Scholar
Flierl, G.R. 1978 Models of vertical structure and the calibration of two-layer models. Dyn. Atmos. Oceans 2 (4), 341381.CrossRefGoogle Scholar
Fuchs, Ž. & Raymond, D.J. 2002 Large-scale modes of a nonrotating atmosphere with water vapor and cloud–radiation feedbacks. J. Atmos. Sci. 59 (10), 16691679.2.0.CO;2>CrossRefGoogle Scholar
Fuchs, Z. & Raymond, D.J. 2005 Large-scale modes in a rotating atmosphere with radiative–convective instability and WISHE. J. Atmos. Sci. 62 (11), 40844094.CrossRefGoogle Scholar
Fuchs, Ž. & Raymond, D.J. 2017 A simple model of intraseasonal oscillations. J. Adv. Model. Earth Sy. 9 (2), 11951211.CrossRefGoogle Scholar
Gill, A. 1982 Studies of moisture effects in simple atmospheric models: the stable case. Geophys. Astrophys. Fluid Dyn. 19, 119.CrossRefGoogle Scholar
Gill, A.E. 1980 Some simple solutions for heat-induced tropical circulation. Q. J. R. Meteorol. Soc. 106 (449), 447462.CrossRefGoogle Scholar
Haertel, P., Straub, K. & Budsock, A. 2015 Transforming circumnavigating Kelvin waves that initiate and dissipate the Madden–Julian oscillation. Q. J. R. Meteorol. Soc. 141 (690), 15861602.CrossRefGoogle Scholar
Haertel, P., Straub, K. & Fedorov, A. 2014 Lagrangian overturning and the Madden–Julian oscillation. Q. J. R. Meteorol. Soc. 140 (681), 13441361.CrossRefGoogle Scholar
Heckley, W.A. & Gill, A. 1984 Some simple analytical solutions to the problem of forced equatorial long waves. Q. J. R. Meteorol. Soc. 110, 203217.CrossRefGoogle Scholar
Hendon, H.H. & Liebmann, B. 1994 Organization of convection within the Madden–Julian oscillation. J. Geophys. Res.: Atmos. 99 (D4), 80738083.CrossRefGoogle Scholar
Hoskins, B.J. & Bretherton, F.P. 1972 Atmospheric frontogenesis models: mathematical formulation and solution. J. Atmos. Sci. 29 (1), 1137.2.0.CO;2>CrossRefGoogle Scholar
Jiang, X., Adames, Á.F., Kim, D., Maloney, E.D., Lin, H., Kim, H., Zhang, C., DeMott, C.A. & Klingaman, N.P. 2020 Fifty years of research on the Madden–Julian oscillation: recent progress, challenges, and perspectives. J. Geophys. Res.: Atmos. 125 (17), e2019JD030911.CrossRefGoogle Scholar
Katsaros, K. 2001 Evaporation and humidity. Enc. Ocean Sci. 1, 870877.Google Scholar
Khairoutdinov, M.F. & Emanuel, K. 2018 Intraseasonal variability in a cloud-permitting near-global equatorial aquaplanet model. J. Atmos. Sci. 75 (12), 43374355.CrossRefGoogle Scholar
Kizner, Z., Reznik, G., Fridman, B., Khvoles, R. & McWilliams, J. 2008 Shallow-water modons on the $f$-plane. J. Fluid Mech. 603, 305329.CrossRefGoogle Scholar
Kurganov, A., Liu, Y. & Zeitlin, V. 2020 Moist-convective thermal rotating shallow water model. Phys. Fluids 32, 066601.CrossRefGoogle Scholar
Lahaye, N. & Zeitlin, V. 2012 Existence and properties of ageostrophic modons and coherent tripoles in the two-layer rotating shallow water model on the $f$-plane. J. Fluid Mech. 706, 71107.CrossRefGoogle Scholar
Lambaerts, J., Lapeyre, G., Zeitlin, V. & Bouchut, F. 2011 Simplified two-layer models of precipitating atmosphere and their properties. Phys. Fluids 23 (4), 046603.CrossRefGoogle Scholar
Larichev, V.D. & Reznik, G.M. 1976 On two-dimensional solitary Rossby waves. In Doklady Akademii Nauk, vol. 231, pp. 1077–1079. Russian Academy of Sciences.Google Scholar
Le Sommer, J., Reznik, G.M. & Zeitlin, V. 2004 Nonlinear geostrophic adjustment of long-wave disturbances in the shallow-water model on the equatorial beta-plane. J. Fluid Mech. 515, 135.CrossRefGoogle Scholar
Lecoanet, D., Vasil, G.M., Burns, K.J., Brown, B.P. & Oishi, J.S. 2019 Tensor calculus in spherical coordinates using Jacobi polynomials. Part-II: implementation and examples. J. Comput. Phys: X 3, 100012.Google Scholar
LeSommer, J., Reznik, G.M. & Zeitlin, V. 2004 Nonlinear geostrophic adjustment of long-wave disturbances in the shallow-water model on the equatorial beta-plane. J. Fluid Mech. 515, 135170.Google Scholar
Lindzen, R.S. & Nigam, S. 1987 On the role of sea-surface temperature gradients in forcing low-level winds and convergence in tropics. J. Atmos. Sci. 44 (17), 24182436.2.0.CO;2>CrossRefGoogle Scholar
Madden, R.A. & Julian, P.R. 1971 Detection of a 40–50 day oscillation in the zonal wind in the tropical Pacific. J. Atmos. Sci. 28 (5), 702708.2.0.CO;2>CrossRefGoogle Scholar
Majda, A.J. & Stechmann, S.N. 2009 The skeleton of tropical intraseasonal oscillations. Proc. Natl Acad. Sci. USA 106 (21), 84178422.CrossRefGoogle ScholarPubMed
Manabe, S., Smagorinsky, J. & Strickler, R.F. 1965 Simulated climatology of a general circulation model with a hydrologic cycle. Mon. Weath. Rev. 93 (12), 769798.2.3.CO;2>CrossRefGoogle Scholar
Matsuda, Y. & Takayama, H. 1989 Evolution of disturbance and geostrophic adjustment on the sphere. J. Meteorol. Soc. Jpn. 67 (6), 949966.CrossRefGoogle Scholar
Matsuno, T. 1966 Quasi-geostrophic motions in the equatorial area. J. Meteorol. Soc. Jpn. 44 (1), 2543.CrossRefGoogle Scholar
McIntyre, M.E. & Norton, W.A. 1990 Dissipative wave-mean interactions and the transport of vorticity or potential vorticity. J. Fluid Mech. 212, 403435.CrossRefGoogle Scholar
Muller, C.J., Back, L.E., O'Gorman, P.A. & Emanuel, K.A. 2009 A model for the relationship between tropical precipitation and column water vapor. Geophys. Res. Lett. 36 (16), L16804.CrossRefGoogle Scholar
Nakazawa, T. 1988 Tropical super clusters within intraseasonal variations over the western Pacific. J. Meteorol. Soc. Jpn. 66 (6), 823839.CrossRefGoogle Scholar
Neelin, J.D. & Yu, J.-Y. 1994 Modes of tropical variability under convective adjustment and the Madden–Julian oscillation. Part I: analytical theory. J. Atmos. Sci. 51 (13), 18761894.2.0.CO;2>CrossRefGoogle Scholar
Randall, D. 2015 An Introduction to the Global Circulation of the Atmosphere. Princeton University Press.Google Scholar
Raymond, D.J. & Fuchs, Ž. 2009 Moisture modes and the Madden–Julian oscillation. J. Clim. 22 (11), 30313046.CrossRefGoogle Scholar
Reznik, G.M. & Grimshaw, R. 2001 Ageostrophic dynamics of an intense localized vortex on a beta-plane. J. Fluid Mech. 443, 351376.CrossRefGoogle Scholar
Ribstein, B., Gula, J. & Zeitlin, V. 2010 (A)geostrophic adjustment of dipolar perturbations, formation of coherent structures and their properties, as follows from high-resolution numerical simulations with rotating shallow water model. Phys. Fluids 22, 116603.CrossRefGoogle Scholar
Rostami, M. & Zeitlin, V. 2018 An improved moist-convective rotating shallow-water model and its application to instabilities of hurricane-like vortices. Q. J. R. Meteorol. Soc. 144 (714), 14501462.CrossRefGoogle Scholar
Rostami, M. & Zeitlin, V. 2019 a Eastward-moving convection-enhanced modons in shallow water in the equatorial tangent plane. Phys. Fluids 31 (2), 021701.CrossRefGoogle Scholar
Rostami, M. & Zeitlin, V. 2019 b Geostrophic adjustment on the equatorial beta-plane revisited. Phys. Fluids 31 (8), 081702.CrossRefGoogle Scholar
Rostami, M. & Zeitlin, V. 2020 a Can geostrophic adjustment of baroclinic disturbances in tropical atmosphere explain MJO events? Q. J. R. Meteorolog. Soc. 146 (733), 39984013.CrossRefGoogle Scholar
Rostami, M. & Zeitlin, V. 2020 b Eastward-moving equatorial modons in moist-convective shallow-water models. Geophys. Astrophys. Fluid Dyn. 123.CrossRefGoogle Scholar
Schecter, D.A. & Dunkerton, T.J. 2009 Hurricane formation in diabatic Ekman turbulence. Q. J. R. Meteorol. Soc. 135 (641), 823838.CrossRefGoogle Scholar
Seager, R. 1991 A simple model of the climatology and the variability of the low-level wind field in the tropics. J. Clim. 4, 164179.2.0.CO;2>CrossRefGoogle Scholar
Sutyrin, G.G. & Flierl, G.R. 1994 Intense vortex motionon the beta plane: development of the beta gyres. J. Atmos. Sci. 51, 773790.2.0.CO;2>CrossRefGoogle Scholar
Tribbia, J.J. 1984 Modons in spherical geometry. Geophys. Astrophys. Fluid Dyn. 30 (1–2), 131168.CrossRefGoogle Scholar
Vasil, G.M., Lecoanet, D., Burns, K.J., Oishi, J.S. & Brown, B.P. 2019 Tensor calculus in spherical coordinates using Jacobi polynomials. Part-I: mathematical analysis and derivations. J. Comput. Phys: X 3, 100013.Google Scholar
Verkley, W.T.M. 1984 The construction of barotropic modons on a sphere. J. Atmos. Sci. 41 (16), 24922504.2.0.CO;2>CrossRefGoogle Scholar
Wedi, N.P. & Smolarkiewicz, P.K. 2010 A nonlinear perspective on the dynamics of the MJO: idealized large-eddy simulations. J. Atmos. Sci. 67, 12021217.CrossRefGoogle Scholar
Wheeler, M. & Kiladis, G.N. 1999 Convectively coupled equatorial waves: analysis of clouds and temperature in the wavenumber-frequency domain. J. Atmos. Sci. 56 (3), 374399.2.0.CO;2>CrossRefGoogle Scholar
Yang, D. & Ingersoll, A.P. 2011 Testing the hypothesis that the MJO is a mixed Rossby–gravity wave packet. J. Atmos. Sci. 68 (2), 226239.CrossRefGoogle Scholar
Yang, D. & Ingersoll, A.P. 2013 Triggered convection, gravity waves, and the MJO: a shallow-water model. J. Atmos. Sci. 70 (8), 24762486.CrossRefGoogle Scholar
Yang, D. & Ingersoll, A.P. 2014 A theory of the MJO horizontal scale. Geophys. Res. Lett. 41 (3), 10591064.CrossRefGoogle Scholar
Yano, J.-I. & Bonazzola, M. 2009 Scale analysis for large-scale tropical atmospheric dynamics. J. Atmos. Sci. 66 (1), 159172.CrossRefGoogle Scholar
Yano, J.-I. & Emanuel, K. 1991 An improved model of tropical troposphere and its coupling with the stratosphere. J. Atmos. Sci. 48 (3), 377389.2.0.CO;2>CrossRefGoogle Scholar
Yano, J.-I., Mulet, S. & Bonazzola, M. 2009 Tropical large-scale circulations: asymptotically non-divergent? Tellus A 61, 417427.CrossRefGoogle Scholar
Yano, J.-I. & Tribbia, J.J. 2017 Tropical atmospheric Madden–Julian oscillation: a strongly nonlinear free solitary Rossby wave? J. Atmos. Sci. 74 (10), 34733489.CrossRefGoogle Scholar
Zeitlin, V. 2018 Geophysical Fluid Dynamics: Understanding (almost) Everything with Rotating Shallow Water Models. Oxford University Press.CrossRefGoogle Scholar
Zhang, C. 2005 Madden–Julian oscillation. Rev. Geophys. 43 (2), RG2003.CrossRefGoogle Scholar
Zhang, C., Adames, Á.F., Khouider, B., Wang, B. & Yang, D. 2020 Four theories of the Madden–Julian oscillation. Rev. Geophys. 58 (3), e2019RG000685.CrossRefGoogle ScholarPubMed