Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-28T03:03:21.675Z Has data issue: false hasContentIssue false

Enstrophy transport in swirl combustion

Published online by Cambridge University Press:  06 August 2019

Askar Kazbekov
Affiliation:
Institute for Aerospace Studies, University of Toronto, Toronto M3H 5T6, Canada
Keishi Kumashiro
Affiliation:
Institute for Aerospace Studies, University of Toronto, Toronto M3H 5T6, Canada
Adam M. Steinberg*
Affiliation:
Institute for Aerospace Studies, University of Toronto, Toronto M3H 5T6, Canada Daniel Guggenheim School of Aerospace Engineering, Georgia Institute of Technology, Atlanta 30332, USA
*
Email address for correspondence: adam.steinberg@gatech.edu

Abstract

The contributions of vortex stretching, dilatation, baroclinic torque and viscous diffusion to Reynolds-averaged enstrophy transport in turbulent swirl flames were experimentally measured using tomographic particle image velocimetry and $\text{CH}_{2}\text{O}$ planar laser induced fluorescence at jet Reynolds numbers of 26 000–51 000. The mean baroclinic torque was determined by subtracting the other terms in the enstrophy transport equation from the mean Lagrangian derivative. Enstrophy production from baroclinic torque was found to be significant relative to the other transport terms across all conditions studies. This result contrasts with direct numerical simulations of flames in homogeneous isotropic turbulence, which show a decreasing relative significance of baroclinic torque with increasing turbulence intensity (e.g. Bobbitt, Lapointe & Blanquart, Phys. Fluids, vol. 28 (1), 2016, 015101). Hence, the significance of baroclinic enstrophy production in flames is not determined entirely by the local turbulence and flame properties, but also depends on the configuration-specific pressure field.

Type
JFM Papers
Copyright
© 2019 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bobbitt, B. & Blanquart, G. 2016 Vorticity isotropy in high Karlovitz number premixed flames. Phys. Fluids 28 (10), 105101.Google Scholar
Bobbitt, B., Lapointe, S. & Blanquart, G. 2016 Vorticity transformation in high Karlovitz number premixed flames. Phys. Fluids 28 (1), 015101.Google Scholar
Bray, K. N. C., Libby, P. A. & Moss, J. B. 1985 Unified modeling approach for premixed turbulent combustion. Part I: General formulation. Combust. Flame 61 (1), 87102.Google Scholar
Buch, K. A. & Dahm, W. J. A. 1998 Experimental study of the fine-scale structure of conserved scalar mixing in turbulent shear flows. Part 2. Sc ≈ 1. J. Fluid Mech. 364, 129.Google Scholar
Caux-Brisebois, V., Steinberg, A. M., Arndt, C. M. & Meier, W. 2014 Thermo-acoustic velocity coupling in a swirl stabilized gas turbine model combustor. Combust. Flame 161 (12), 31663180.Google Scholar
Chakraborty, N. 2014 Statistics of vorticity alignment with local strain rates in turbulent premixed flames. Eur. J. Mech. (B/Fluids) 46, 201220.Google Scholar
Chakraborty, N., Konstantinou, I. & Lipatnikov, A. 2016 Effects of Lewis number on vorticity and enstrophy transport in turbulent premixed flames. Phys. Fluids 28 (1), 015109.Google Scholar
Coriton, B. & Frank, J. H. 2017 Impact of heat release on strain rate field in turbulent premixed bunsen flames. Proc. Combust. Inst. 36 (2), 18851892.Google Scholar
Coriton, B., Steinberg, A. M. & Frank, J. H. 2014 High-speed tomographic PIV and OH PLIF measurements in turbulent reactive flows. Exp. Fluids 55 (6), 1743.Google Scholar
Dem, C., Stöhr, M., Arndt, C. M., Steinberg, A. M. & Meier, W. 2014 Experimental study of turbulence-chemistry interactions in perfectly and partially premixed confined swirl flames. Z. Phys. Chem. 229 (4), 569595.Google Scholar
Dopazo, C., Cifuentes, L. & Chakraborty, N. 2017 Vorticity budgets in premixed combusting turbulent flows at different Lewis numbers. Phys. Fluids 29 (4), 045106.Google Scholar
Garcia, D. 2010 Robust smoothing of gridded data in one and higher dimensions with missing values. Comput. Stat. Data Anal. 54 (4), 11671178.Google Scholar
Geikie, M. K. & Ahmed, K. A. 2018 Pressure-gradient tailoring effects on the turbulent flame-vortex dynamics of bluff-body premixed flames. Combust. Flame 197, 227242.Google Scholar
Geikie, M. K., Carr, Z. R., Ahmed, K. A. & Forliti, D. J. 2017 On the flame-generated vorticity dynamics of bluff-body-stabilized premixed flames. Flow Turbul. Combust. 99 (2), 487509.Google Scholar
Hamlington, P. E., Poludnenko, A. Y. & Oran, E. S. 2011 Interactions between turbulence and flames in premixed reacting flows. Phys. Fluids 23 (12), 125111.Google Scholar
Holzner, M., Liberzon, A., Nikitin, N., Luthi, B., Kinzelbach, W. & Tsinober, A. 2008 A Lagrangian investigation of the small-scale features of turbulent entrainment through particle tracking and direct numerical simulation. J. Fluid Mech. 598, 465475.Google Scholar
Ishizuka, S. 2002 Flame propagation along a vortex axis. Prog. Energy Combust. Sci. 28 (6), 477542.Google Scholar
Libby, P. A. 1985 Theory of normal premixed turbulent flames revisited. Prog. Energy Combust. Sci. 11 (1), 8396.Google Scholar
Louch, D. S. & Bray, K. N. C. 1998 Vorticity and scalar transport in premixed turbulent combustion. Proc. Combust. Inst. 27 (1), 801810.Google Scholar
MacArt, J. F., Grenga, T. & Mueller, M. E. 2018 Effects of combustion heat release on velocity and scalar statistics in turbulent premixed jet flames at low and high Karlovitz numbers. Combust. Flame 191, 468485.Google Scholar
Meier, W., Weigand, P., Duan, X. & Giezendanner-Thoben, R. 2007 Detailed characterization of the dynamics of thermoacoustic pulsations in a lean premixed swirl flame. Combust. Flame 150 (1–2), 226.Google Scholar
Mueller, C. J., Driscoll, J. F., Reuss, D. L., Drake, M. C. & Rosalik, M. E. 1998 Vorticity generation and attenuation as vortices convect through a premixed flame. Combust. Flame 112 (3), 342346.Google Scholar
Najm, H. N., Knio, O. M., Paul, P. H. & Wyckoff, P. S. 1998 A study of flame observables in premixed methane – air flames. Combust. Sci. Technol. 140 (1-6), 369403.Google Scholar
Osborne, J. R., Ramji, S. A., Carter, C. D., Peltier, S., Hammack, S., Lee, T. & Steinberg, A. M. 2016 Simultaneous 10 kHz TPIV, OH PLIF, and CH2O PLIF measurements of turbulent flame structure and dynamics. Exp. Fluids 57 (5), 65.Google Scholar
Osborne, J. R., Ramji, S. A., Carter, C. D. & Steinberg, A. M. 2017 Relationship between local reaction rate and flame structure in turbulent premixed flames from simultaneous 10 kHz TPIV, OH PLIF, and CH2O PLIF. Proc. Combust. Inst. 36 (2), 18351841.Google Scholar
Papapostolou, V., Wacks, D. H., Chakraborty, N., Klein, M. & Im, H. G. 2017 Enstrophy transport conditional on local flow topologies in different regimes of premixed turbulent combustion. Sci. Rep. 7 (1), 11545.Google Scholar
Poludnenko, A. Y. 2015 Pulsating instability and self-acceleration of fast turbulent flames. Phys. Fluids 27 (1), 014106.Google Scholar
Poludnenko, A. Y., Gardiner, T. A. & Oran, E. S. 2011 Spontaneous transition of turbulent flames to detonations in unconfined media. Phys. Rev. Lett. 107 (5), 054501.Google Scholar
Renard, P.-H., Thévenin, D., Rolon, J. C. & Candel, S. 2000 Dynamics of flame/vortex interactions. Prog. Energy Combust. Sci. 26 (3), 225282.Google Scholar
Steinberg, A. M., Boxx, I., Arndt, C. M., Frank, J. H. & Meier, W. 2011 Experimental study of flame-hole reignition mechanisms in a turbulent non-premixed jet flame using sustained multi-kHz PIV and crossed-plane OH PLIF. Proc. Combust. Inst. 33 (1), 16631672.Google Scholar
Steinberg, A. M., Driscoll, J. F. & Swaminathan, N. 2012 Statistics and dynamics of turbulence-flame alignment in premixed combustion. Combust. Flame 159 (8), 25762588; special Issue on Turbulent Combustion.Google Scholar
Wabel, T. M., Skiba, A. W. & Driscoll, J. F. 2017a Turbulent burning velocity measurements: extended to extreme levels of turbulence. Proc. Combust. Inst. 36 (2), 18011808.Google Scholar
Wabel, T. M., Skiba, A. W., Temme, J. E. & Driscoll, J. F. 2017b Measurements to determine the regimes of premixed flames in extreme turbulence. Proc. Combust. Inst. 36 (2), 18091816.Google Scholar
Wabel, T. M., Zhang, P., Zhao, X., Wang, H., Hawkes, E. & Steinberg, A. M. 2018 Assessment of chemical scalars for heat release rate measurement in highly turbulent premixed combustion including experimental factors. Combust. Flame 194, 485506.Google Scholar
Watanabe, T., Sakai, Y., Nagata, K., Ito, Y. & Hayase, T. 2014 Enstrophy and passive scalar transport near the turbulent/non-turbulent interface in a turbulent planar jet flow. Phys. Fluids 26 (10), 105103.Google Scholar