Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-12T12:10:06.123Z Has data issue: false hasContentIssue false

Electrokinetic oscillatory flow and energy conversion of viscoelastic fluids in microchannels: a linear analysis

Published online by Cambridge University Press:  26 May 2021

Zhaodong Ding
Affiliation:
School of Mathematical Science, Inner Mongolia University, Hohhot, Inner Mongolia010021, PR China
Yongjun Jian*
Affiliation:
School of Mathematical Science, Inner Mongolia University, Hohhot, Inner Mongolia010021, PR China
*
Email address for correspondence: jianyj@imu.edu.cn

Abstract

We studied the electrokinetic flow of viscoelastic fluids subjected to an oscillatory pressure gradient. Under the assumption of laminar unidirectional flow, the constitutive and motion equations of fluids are in the linear regime. Since the surface potentials are assumed to be small, the Poisson–Boltzmann equation is linearised. Resonance behaviours appear in the flow when the elastic effect of fluids is dominant. Based on the interaction of viscoelastic shear waves, we explain the mechanism of resonance and derive the critical Deborah number, Dec = 1/4, which dictates the occurrence of resonance. Using the Maxwell fluid model, the resonance enhances the electrokinetic effects and dramatically increases the electrokinetic energy conversion efficiency. However, by employing the Oldroyd-B fluid model, we reveal that the amplification of efficiency is suppressed even for a very small Newtonian solvent contribution. This could be one of the reasons for the unavailability of reports on experimental verification regarding the high efficiency predicted by Bandopadhyay & Chakraborty (Appl. Phys. Lett., vol. 101, 2012, 043905). The damping effect of solvent viscosity is more significant for higher-order resonances. The effects of multiple relaxation times on the resonance behaviours are investigated and the results indicate that Dec still dominates the occurrence of resonances for streaming potential field and flow rate.

Type
JFM Papers
Copyright
© The Author(s), 2021. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Andrienko, Y.A., Siginer, D.A. & Yanovsky, Y.G. 2000 Resonance behavior of viscoelastic fluids in Poiseuille flow and application to flow enhancement. Intl J. Non-Linear Mech. 35 (1), 95102.CrossRefGoogle Scholar
Bandopadhyay, A. & Chakraborty, S. 2011 Steric-effect induced alterations in streaming potential and energy transfer efficiency of non-newtonian fluids in narrow confinements. Langmuir 27 (19), 1224312252.CrossRefGoogle ScholarPubMed
Bandopadhyay, A. & Chakraborty, S. 2012 Giant augmentations in electro-hydro-dynamic energy conversion efficiencies of nanofluidic devices using viscoelastic fluids. Appl. Phys. Lett. 101 (4), 043905.CrossRefGoogle Scholar
Barnes, H., Townsend, P. & Walters, K. 1969 Flow of non-Newtonian liquids under a varying pressure gradient. Nature 224, 585587.CrossRefGoogle Scholar
Barnes, H., Townsend, P. & Walters, K. 1971 Pulsatile flow of non-Newtonian liquids. Rheol. Acta 10, 517527.CrossRefGoogle Scholar
Berli, C.L.A. 2010 Electrokinetic energy conversion in microchannels using polymer solutions. J. Colloid Interface Sci. 349 (1), 446448.CrossRefGoogle ScholarPubMed
Bird, R.B., Armstrong, R.C. & Hassager, O. 1987 Dynamics of Polymeric Liquids, 2nd edn, vol. 1. John Wiley & Sons.Google Scholar
Bocquet, L. & Charlaix, E. 2010 Nanofluidics, form bulk to interfaces. Chem. Soc. Rev. 39, 10731095.CrossRefGoogle Scholar
Boléve, A., Crespy, A., Revil, A., Janod, F. & Mattiuzzo, J.L. 2007 Streaming potentials of granular media: influence of the Dukhin and Reynolds numbers. J. Geophys. Res. 112, B08204.Google Scholar
Buren, M., Jian, Y., Zhao, Y. & Chang, L. 2018 Electroviscous effect and electrokinetic energy conversion in time periodic pressure-driven flow through a parallel-plate nanochannel with surface charge-dependent slip. J. Phys. D: Appl. Phys. 51 (20), 205601.CrossRefGoogle Scholar
Casanellas, L. & Ortín, J. 2011 Laminar oscillatory flow of Maxwell and Oldroyd-B fluids: theoretical analysis. J. Non-Newtonian Fluid Mech. 166 (23–24), 13151326.CrossRefGoogle Scholar
Casanellas, L. & Ortín, J. 2012 Experiments on the laminar oscillatory flow of wormlike micellar solutions. Rheol. Acta 51, 545557.CrossRefGoogle Scholar
Castrejón-Pita, J.R., del Río, J.A., Castrejón-Pita, A.A. & Huelsz, G. 2003 Experimental observation of dramatic differences in the dynamic response of Newtonian and Maxwellian fluids. Phys. Rev. E 68 (4), 046301.CrossRefGoogle ScholarPubMed
Chakraborty, S. & Das, S. 2008 Streaming-field-induced convective transport and its influence on the electroviscous effects in narrow fluidic confinement beyond the Debye-Hückel limit. Phys. Rev. E 77 (3), 037303.CrossRefGoogle ScholarPubMed
Chanda, S., Sinha, S. & Das, S. 2014 Streaming potential and electroviscous effects in soft nanochannels: towards designing more efficient nanofluidic electrochemomechanical energy converters. Soft Matter 10 (38), 75587568.CrossRefGoogle ScholarPubMed
Chang, C.C. & Yang, R.J. 2011 Electrokinetic energy conversion efficiency in ion-selective nanopores. Appl. Phys. Lett. 99 (8), 083102.CrossRefGoogle Scholar
Daiguji, H., Oka, Y., Adachi, T. & Shirono, K. 2006 Theoretical study on the efficiency of nanofluidic batteries. Electrochem. Commun. 8 (11), 17961800.CrossRefGoogle Scholar
Daiguji, H., Yang, P., Szeri, A. & Majumdar, A. 2004 Electrochemomechanical energy conversion in nanofluidic channels. Nano Lett. 4 (12), 23152322.CrossRefGoogle Scholar
Das, S., Guha, A. & Mitra, S.K. 2013 Exploring new scaling regimes for streaming potential and electroviscous effects in a nanocapillary with overlapping electric double layers. Anal. Chim. Acta 804, 159166.CrossRefGoogle Scholar
Davidson, C. & Xuan, X. 2008 a Electrokinetic energy conversion in slip nanochannels. J. Power Sources 179 (1), 297300.CrossRefGoogle Scholar
Davidson, C. & Xuan, X. 2008 b Effects of Stern layer conductance on electrokinetic energy conversion in nanofluidic channels. Electrophoresis 29 (5), 11251130.CrossRefGoogle ScholarPubMed
Davies, J., Bhumiratana, S. & Bird, R. 1978 Elastic and inertial effects in pulsatile flow of polymeric liquids in circular tubes. J. Non-Newtonian Fluid Mech. 3, 237259.CrossRefGoogle Scholar
De Haro, M.L., Del Río, J.A.P. & Whitaker, S. 1996 Flow of Maxwell fluids in porous media. Trans. Porous Med. 25 (2), 167192.CrossRefGoogle Scholar
Del Río, J.A., De Haro, M.L. & Whitaker, S. 1998 Enhancement in the dynamic response of a viscoelastic fluid flowing in a tube. Phys. Rev. E 58 (5), 63236327.CrossRefGoogle Scholar
Ding, Z., Jian, Y. & Tan, W. 2019 Electrokinetic energy conversion of two-layer fluids through nanofluidic channels. J. Fluid Mech. 863, 10621090.CrossRefGoogle Scholar
Galindo-Rosales, F.J., Campo-Deaño, L., Sousa, P.C., Ribeiro, V.M., Oliveira, M.S., Alves, M.A. & Pinho, F.T. 2014 Viscoelastic instabilities in micro-scale flows. Exp. Therm. Fluid Sci. 59, 128139.CrossRefGoogle Scholar
Gillespie, D. 2012 High energy conversion efficiency in nanofluidic channels. Nano Lett. 12 (3), 14101416.CrossRefGoogle ScholarPubMed
Goswami, P. & Chakraborty, S. 2010 Energy transfer through streaming effects in time-periodic pressure- driven nanochannel flows with interfacial slip. Langmuir 26 (1), 581590.CrossRefGoogle ScholarPubMed
Guan, W., Li, S.X. & Reed, M.A. 2014 Voltage gated ion and molecule transport in engineered nanochannels: theory, fabrication and applications. Nanotechnology 25 (12), 122001.CrossRefGoogle ScholarPubMed
Herrera, E. 2010 Study on the pulsating flow of a worm-like micellar solution. J. Non-Newtonian Fluid Mech. 165 (3–4), 174183.CrossRefGoogle Scholar
Hunter, R.J. 2000 Foundations of Colloid Science, 2nd edn. Oxford University Press.Google Scholar
Jian, Y., Li, F., Liu, Y., Chang, L., Liu, Q. & Yang, L. 2017 Electrokinetic energy conversion efficiency of viscoelastic fluids in a polyelectrolyte-grafted nanochannel. Colloids Surf. B Biointerfaces 156, 405413.CrossRefGoogle Scholar
Karniadakis, G., Beskok, A. & Aluru, N. 2005 Microflows and Nanoflows: Fundamentals and Simulation. Springer Science.Google Scholar
Koranlou, A., Ashrafizadeh, S.N. & Sadeghi, A. 2019 Enhanced electrokinetic energy harvesting from soft nanochannels by the inclusion of ionic size. J. Phys. D: Appl. Phys. 52, 155502.CrossRefGoogle Scholar
Lac, E. & Sherwood, J.D. 2009 Streaming potential generated by a drop moving along the centreline of a capillary. J. Fluid Mech. 640, 5577.CrossRefGoogle Scholar
Li, D. 2004 Electrokinetics in Microfluidics, vol. II. Academic Press.Google Scholar
Lyklema, J. 1995 Fundamentals of Interface and Colloid Science, vol. II. Academic Press.Google Scholar
Manero, O. & Walters, K. 1980 On elastic effects in unsteady pipe flows. Rheol. Acta 19, 277284.CrossRefGoogle Scholar
Masliyah, J.H. & Bhattacharjee, S. 2006 Electrokinetic and Colloid Transport Phenomena. John Wiley & Sons.CrossRefGoogle Scholar
Mei, L., Yeh, L.-H. & Qian, S. 2017 Buffer anions can enormously enhance the electrokinetic energy conversion in nanofluidics with highly overlapped double layers. Nano Energy 32, 374381.CrossRefGoogle Scholar
Morozov, A.N. & van Saarloos, W. 2007 An introductory essay on subcritical instabilities and the transition to turbulence in visco-elastic parallel shear flows. Phys. Rep. 447, 112143.CrossRefGoogle Scholar
Moyers-Gonzalez, M.A., Owens, R.G. & Fang, J. 2008 A non-homogeneous constitutive model for human blood. Part 1. Model derivation and steady flow. J. Fluid Mech. 617, 327354.CrossRefGoogle Scholar
Moyers-Gonzalez, M.A., Owens, R.G. & Fang, J. 2009 On the high frequency oscillatory tube flow of healthy human blood. J. Non-Newtonian Fluid Mech. 163 (1–3), 4561.CrossRefGoogle Scholar
Munshi, F. & Chakraborty, S. 2009 Hydroelectrical energy conversion in narrow confinements in the presence of transverse magnetic fields with electrokinetic effects. Phys. Fluids 21 (12), 122003.CrossRefGoogle Scholar
Nguyen, T., Xie, Y., de Vreede, L.J., van den Berg, A. & Eijkel, J.C.T. 2013 Highly enhanced energy conversion from the streaming current by polymer addition. Lab on a Chip 13 (16), 32103216.CrossRefGoogle ScholarPubMed
Nguyen, T., Van Den Meer, D., Van Den Berg, A. & Eijkel, J.C.T. 2017 Investigation of the effects of time periodic pressure and potential gradients on viscoelastic fluid flow in circular narrow confinements. Microfluid Nanofluid 21 (3), 37.CrossRefGoogle Scholar
Olthuis, W., Schippers, B., Eijkel, J. & van den Berg, A. 2005 Energy from streaming current and potential. Sensors Actuators, B Chem. 111, 385389.CrossRefGoogle Scholar
Osterle, J.F. 1964 Electrokinetic energy conversion. J. Appl. Mech. 31 (2), 161164.CrossRefGoogle Scholar
Patwary, J., Chen, G. & Das, S. 2016 Efficient electrochemomechanical energy conversion in nanochannels grafted with polyelectrolyte layers with pH-dependent charge density. Microfluid Nanofluid 20 (2), 37.CrossRefGoogle Scholar
Pennathur, S., Eijkel, J.C.T. & van den Berg, A. 2007 Energy conversion in microsystems: is there a role for micro/nanofluidics? Lab on a Chip 7 (10), 12341237.Google Scholar
Phan-Thien, N. 1978 Pulsating flow of polymeric fluids. J. Non-Newtonian Fluid Mech. 4, 167176.CrossRefGoogle Scholar
Phan-Thien, N. 1980 Flow enhancement mechanisms of a pulsating flow of non-Newtonian liquids. Rheol. Acta 19, 285290.CrossRefGoogle Scholar
Phan-Thien, N. 1981 On a pulsating flow of polymeric fluids: strain–dependent memory kernels. J. Rheol. 25, 293314.CrossRefGoogle Scholar
Phan-Thien, N. & Dudek, J. 1982 a Pulsating flow revisited. J. Non-Newtonian Fluid Mech. 11, 147161.CrossRefGoogle Scholar
Phan-Thien, N. & Dudek, J. 1982 b Pulsating flow of a plastic fluid. Nature 296, 843844.CrossRefGoogle Scholar
Prost-Domasky, S.A. & Khomami, B. 1996 A note on start-up and large amplitude oscillatory shear flow of multimode viscoelastic fluids. Rheol. Acta 35 (3), 211224.CrossRefGoogle Scholar
Ren, Y. & Stein, D. 2008 Slip-enhanced electrokinetic energy conversion in nanofluidic channels. Nanotechnology 19 (19), 195707.CrossRefGoogle ScholarPubMed
Russel, W.B. 1978 The rheology of suspensions of charged rigid spheres. J. Fluid Mech. 85 (2), 209232.CrossRefGoogle Scholar
Sadek, S.H. & Pinho, F.T. 2019 Electro-osmotic oscillatory flow of viscoelastic fluids in a microchannel. J. Non-Newtonian Fluid Mech. 266, 4658.CrossRefGoogle Scholar
Schnitzer, O., Frankel, I. & Yariv, E. 2012 Streaming-potential phenomena in the thin-Debye-layer limit. Part 2. Moderate-Péclet-number theory. J. Fluid Mech. 704, 109136.CrossRefGoogle Scholar
Schnitzer, O. & Yariv, E. 2016 Streaming-potential phenomena in the thin-Debye-layer limit. Part 3. Shear-induced electroviscous repulsion. J. Fluid Mech. 786, 84109.CrossRefGoogle Scholar
Schoch, R.B., Han, J. & Renaud, P. 2008 Transport phenomena in nanofluidics. Rev. Mod. Phys. 80 (3), 839883.CrossRefGoogle Scholar
Sherwood, J.D. 1980 The primary electroviscous effect in a suspension of spheres. J. Fluid Mech. 101 (3), 609629.CrossRefGoogle Scholar
Sherwood, J.D. 2007 Streaming potential generated by two-phase flow in a capillary. Phys. Fluids 19, 053101.CrossRefGoogle Scholar
Sherwood, J.D. 2008 Streaming potential generated by a long viscous drop in a capillary. Langmuir 24 (18), 1001110018.CrossRefGoogle Scholar
Sherwood, J.D. 2009 Streaming potential generated by a small charged drop in Poiseuille flow. Phys. Fluids 21, 013101.CrossRefGoogle Scholar
Siginer, A. 1991 On the pulsating pressure gradient driven flow of viscoelastic liquid. J. Rheol. 35, 271311.CrossRefGoogle Scholar
Siria, A., Poncharal, P., Biance, A.L., Fulcrand, R., Blase, X., Purcell, S.T. & Bocquet, L. 2013 Giant osmotic energy conversion measured in a single transmembrane boron nitride nanotube. Nature 494 (7438), 455458.CrossRefGoogle Scholar
Sparreboom, W., Van den Berg, A. & Eijkel, J.C.T. 2010 Transport in nanofluidic systems: a review of theory and applications. New J. Phys. 12 (3), 338346.CrossRefGoogle Scholar
Torralba, M., Castrejón-Pita, A.A., Hernández, G., Huelsz, G., Del Río, J.A. & Ortín, J. 2007 Instabilities in the oscillatory flow of a complex fluid. Phys. Rev. E 75 (5), 056307.CrossRefGoogle ScholarPubMed
Van der Heyden, F.H., Bonthuis, D.J., Stein, D., Meyer, C. & Dekker, C. 2006 Electrokinetic energy conversion efficiency in nanofluidic channels. Nano Lett. 6 (10), 22322237.CrossRefGoogle ScholarPubMed
Van der Heyden, F.H., Bonthuis, D.J., Stein, D., Meyer, C. & Dekker, C. 2007 Power generation by pressure-driven transport of ions in nanofluidic channels. Nano Lett. 7 (4), 10221025.CrossRefGoogle ScholarPubMed
Wang, M. & Kang, Q. 2010 Electrochemomechanical energy conversion efficiency in silica nanochannels. Microfluid Nanofluid 9 (2–3), 181190.CrossRefGoogle Scholar
Xuan, X. & Li, D. 2006 Thermodynamic analysis of electrokinetic energy conversion. J. Power Sources 156 (2), 677684.CrossRefGoogle Scholar
Yang, J., Lu, F., Kostiuk, L.W. & Kwok, D.Y. 2003 Electrokinetic microchannel battery by means of electrokinetic and microfluidic phenomena. J. Micromech. Microengng 13, 963970.CrossRefGoogle Scholar
Yariv, E., Schnitzer, O. & Frankel, I. 2011 Streaming-potential phenomena in the thin-Debye-layer limit. Part 1. General theory. J. Fluid Mech. 685, 306334.CrossRefGoogle Scholar
Yesilata, B., Clasen, C. & Mckinley, G.H. 2006 Nonlinear shear and extensional flow dynamics of wormlike surfactant solutions. J. Non-Newtonian Fluid Mech. 133 (2–3), 7390.CrossRefGoogle Scholar