Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-11T06:17:41.678Z Has data issue: false hasContentIssue false

Electrohydrodynamic droplet formation in a T-junction microfluidic device

Published online by Cambridge University Press:  02 November 2020

R. Singh
Affiliation:
Department of Mechanical Engineering, Indian Institute of Technology Delhi, New Delhi, 110016, India
S. S. Bahga
Affiliation:
Department of Mechanical Engineering, Indian Institute of Technology Delhi, New Delhi, 110016, India
A. Gupta*
Affiliation:
Department of Mechanical Engineering, Indian Institute of Technology Delhi, New Delhi, 110016, India
*
Email address for correspondence: agupta@mech.iitd.ac.in

Abstract

An experimental investigation of droplet formation induced by an external electric field in a T-shaped microfluidic device is presented. The effect of electric field is reported for scenarios where the hydrodynamics is known to be governed by the cumulative effect of hydrodynamic pressure and interfacial tension acting on the liquid–liquid interface. Experiments reveal that the electrohydrodynamic phenomena transforms the droplet formation mechanism by inducing pinning of the dispersed phase to the channel wall, leading to a significant decrease in the droplet filling time and hence a decrease in the size of droplets generated. The experimental observations are used to formulate a correlation between the droplet size, applied electric field, fluid properties and flow parameters. A mechanistic explanation of droplet formation process using a mathematical model is also presented. Simulations reveal that the droplets are formed primarily due to normal electric stress acting on the liquid–liquid interface. The electric stress results in a distinct feature of pinning and early onset of neck formation of the emerging dispersed phase, leading to a reduction in the size of the droplet formed for the same hydrodynamic conditions. The findings reported demonstrate that an applied electric field has the potential to produce relatively smaller-sized droplets than that possible through hydrodynamics alone.

Type
JFM Papers
Copyright
© The Author(s), 2020. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Allan, R. S. & Mason, S. G. 1962 Particle behaviour in shear and electric fields. I. Deformation and burst of fluid drops. Proc. R. Soc. Lond. A 267 (1328), 4561.Google Scholar
Anna, S. L., Bontoux, N. & Stone, H. A. 2003 Formation of dispersions using ‘flow focusing’ in microchannels. Appl. Phys. Lett. 82 (3), 364366.CrossRefGoogle Scholar
Berry, J. D., Neeson, M. J., Dagastine, R. R., Chan, D. Y. & Tabor, R. F. 2015 Measurement of surface and interfacial tension using pendant drop tensiometry. J. Colloid Interface Sci. 454, 226237.CrossRefGoogle ScholarPubMed
Cheung, Y. N. & Qiu, H. 2010 Acoustic microstreaming for droplet breakup in a microflow-focusing device. Appl. Phys. Lett. 97 (13), 133111.CrossRefGoogle Scholar
Cheung, Y. N. & Qiu, H. 2011 Characterization of acoustic droplet formation in a microfluidic flow-focusing device. Phys. Rev. E 84 (6), 066310.CrossRefGoogle Scholar
Christopher, G. F., Noharuddin, N. N., Taylor, J. A. & Anna, S. L. 2008 Experimental observations of the squeezing-to-dripping transition in T-shaped microfluidic junctions. Phys. Rev. E 78 (3), 036317.CrossRefGoogle ScholarPubMed
Collins, R. T., Jones, J. J., Harris, M. T. & Basaran, O. A. 2008 Electrohydrodynamic tip streaming and emission of charged drops from liquid cones. Nat. Phys. 4 (2), 149154.CrossRefGoogle Scholar
De La Mora, J. F. & Loscertales, I. G. 1994 The current emitted by highly conducting Taylor cones. J. Fluid Mech. 260, 155184.CrossRefGoogle Scholar
De Menech, M., Garstecki, P., Jousse, F. & Stone, H. A. 2008 Transition from squeezing to dripping in a microfluidic T-shaped junction. J. Fluid Mech. 595, 141161.CrossRefGoogle Scholar
Garstecki, P., Fuerstman, M. J., Stone, H. A. & Whitesides, G. M. 2006 Formation of droplets and bubbles in a microfluidic T-junction–scaling and mechanism of break-up. Lab on a Chip 6 (3), 437446.CrossRefGoogle Scholar
Glawdel, T., Elbuken, C. & Ren, C. L. 2012 Droplet formation in microfluidic T-junction generators operating in the transitional regime. I. Experimental observations. Phys. Rev. E 85 (1), 016322.CrossRefGoogle ScholarPubMed
van der Graaf, S., Nisisako, T., Schroen, C. G. P. H., Van Der Sman, R. G. M. & Boom, R. M. 2006 Lattice boltzmann simulations of droplet formation in a t-shaped microchannel. Langmuir 22 (9), 41444152.CrossRefGoogle Scholar
Guckenberger, D. J., de Groot, T. E., Wan, A. M., Beebe, D. J. & Young, E. W. 2015 Micromilling: a method for ultra-rapid prototyping of plastic microfluidic devices. Lab on a Chip 15 (11), 23642378.CrossRefGoogle ScholarPubMed
Guo, Z., Zheng, C. & Shi, B. 2002 Discrete lattice effects on the forcing term in the lattice Boltzmann method. Phys. Rev. E 65 (4), 046308.CrossRefGoogle ScholarPubMed
Gupta, A. & Kumar, R. 2010 a Effect of geometry on droplet formation in the squeezing regime in a microfluidic T-junction. Microfluid Nanofluid 8 (6), 799812.CrossRefGoogle Scholar
Gupta, A. & Kumar, R. 2010 b Flow regime transition at high capillary numbers in a microfluidic T-junction: viscosity contrast and geometry effect. Phys. Fluids 22 (12), 122001.CrossRefGoogle Scholar
Gupta, A., Matharoo, H. S., Makkar, D. & Kumar, R. 2014 Droplet formation via squeezing mechanism in a microfluidic flow-focusing device. Comput. Fluids 100, 218226.CrossRefGoogle Scholar
Ha, J. W. & Yang, S. M. 2000 Electrohydrodynamics and electrorotation of a drop with fluid less conductive than that of the ambient fluid. Phys. Fluids 12 (4), 764772.CrossRefGoogle Scholar
Huang, Y., Wang, Y. L. & Wong, T. N. 2017 AC electric field controlled non-Newtonian filament thinning and droplet formation on the microscale. Lab on a Chip 17 (17), 29692981.CrossRefGoogle ScholarPubMed
Joensson, H. N. & Svahn, H. A. 2012 Droplet microfluidics–a tool for single-cell analysis. Angew. Chem. Intl Ed. Engl. 51 (49), 1217612192.CrossRefGoogle Scholar
Kleinstreuer, C., Li, J. & Koo, J. 2008 Microfluidics of nano-drug delivery. Intl J. Heat Mass Transfer 51 (23-24), 55905597.CrossRefGoogle Scholar
Krüger, T., Kusumaatmaja, H., Kuzmin, A., Shardt, O., Silva, G. & Viggen, E. M. 2017 The Lattice Boltzmann Method. SpringerCrossRefGoogle Scholar
Lac, E. & Homsy, G. M. 2007 Axisymmetric deformation and stability of a viscous drop in a steady electric field. J. Fluid Mech. 590, 239264.CrossRefGoogle Scholar
Lee, C. P., Lan, T. S. & Lai, M. F. 2014 Fabrication of two-dimensional ferrofluid microdroplet lattices in a microfluidic channel. J. Appl. Phys. 115 (17), 17B527.CrossRefGoogle Scholar
Link, D. R., Anna, S. L., Weitz, D. A. & Stone, H. A. 2004 Geometrically mediated breakup of drops in microfluidic devices. Phys. Rev. Lett. 92 (5), 054503.CrossRefGoogle ScholarPubMed
Link, D. R., Grasland-Mongrain, E., Duri, A., Sarrazin, F., Cheng, Z., Cristobal, G., Marquez, M. & Weitz, D. A. 2006 Electric control of droplets in microfluidic devices. Angew. Chem. Intl Ed. Engl. 45 (16), 25562560.CrossRefGoogle ScholarPubMed
Liu, J., Tan, S. H., Yap, Y. F., Ng, M. Y. & Nguyen, N. T. 2011 Numerical and experimental investigations of the formation process of ferrofluid droplets. Microfluid Nanofluid 11 (2), 177187.CrossRefGoogle Scholar
Mählmann, S. & Papageorgiou, D. T. 2011 Interfacial instability in electrified plane Couette flow. J. Fluid Mech. 666, 155188.CrossRefGoogle Scholar
Mazutis, L., Gilbert, J., Ung, W. L., Weitz, D. A., Griffiths, A. D. & Heyman, J. A. 2013 Single-cell analysis and sorting using droplet-based microfluidics. Nat. Protoc. 8 (5), 870.CrossRefGoogle ScholarPubMed
Melcher, J. R. & Taylor, G. I. 1969 Electrohydrodynamics: a review of the role of interfacial shear stresses. Annu. Rev. Fluid Mech. 1 (1), 111146.CrossRefGoogle Scholar
Miralles, V., Huerre, A., Williams, H., Fournié, B. & Jullien, M. C. 2015 A versatile technology for droplet-based microfluidics: thermomechanical actuation. Lab on a Chip 15 (9), 21332139.CrossRefGoogle ScholarPubMed
Murshed, S. S., Tan, S. H., Nguyen, N. T., Wong, T. N. & Yobas, L. 2009 Microdroplet formation of water and nanofluids in heat-induced microfluidic T-junction. Microfluid Nanofluid 6 (2), 253259.CrossRefGoogle Scholar
Ozen, O., Aubry, N., Papageorgiou, D. T. & Petropoulos, P. G. 2006 a Monodisperse drop formation in square microchannels. Phys. Rev. Lett. 96 (14), 144501.CrossRefGoogle ScholarPubMed
Ozen, O., Papageorgiou, D. T. & Petropoulos, P. G. 2006 b Nonlinear stability of a charged electrified viscous liquid sheet under the action of a horizontal electric field. Phys. Fluids 18 (4), 042102.CrossRefGoogle Scholar
Paknemat, H., Pishevar, A. R. & Pournaderi, P. 2012 Numerical simulation of drop deformations and breakup modes caused by direct current electric fields. Phys. Fluids 24 (10), 102101.CrossRefGoogle Scholar
Papageorgiou, D. T. & Vanden-Broeck, J.-M. 2004 Large-amplitude capillary waves in electrified fluid sheets. J. Fluid Mech. 508, 7188.CrossRefGoogle Scholar
Ramos, A. 2011 Electrokinetics and Electrohydrodynamics in Microsystems. Springer.CrossRefGoogle Scholar
Saville, D. A. 1997 Electrohydrodynamics: the Taylor-Melcher leaky dielectric model. Annu. Rev. Fluid Mech. 29 (1), 2764.CrossRefGoogle Scholar
Sherwood, J. D. 1988 Breakup of fluid droplets in electric and magnetic fields. J. Fluid Mech. 188, 133146.CrossRefGoogle Scholar
Shojaeian, M. & Hardt, S. 2018 Fast electric control of the droplet size in a microfluidic T-junction droplet generator. Appl. Phys. Lett. 112 (19), 194102.CrossRefGoogle Scholar
Singh, M., Haverinen, H. M., Dhagat, P. & Jabbour, G. E. 2010 Inkjet printing–process and its applications. Adv. Mater. 22 (6), 673685.CrossRefGoogle ScholarPubMed
Singh, R., Bahga, S. S. & Gupta, A. 2019 a Electric field induced droplet deformation and breakup in confined shear flows. Phys. Rev. Fluids 4 (3), 033701.CrossRefGoogle Scholar
Singh, R., Bahga, S. S. & Gupta, A. 2019 b Electrohydrodynamics in leaky dielectric fluids using lattice Boltzmann method. Eur. J. Mech. B/Fluids 74, 167179.CrossRefGoogle Scholar
Sivasamy, J., Wong, T.-N., Nguyen, N.-T. & Kao, L. T.-H. 2011 An investigation on the mechanism of droplet formation in a microfluidic T-junction. Microfluid Nanofluid 11 (1), 110.CrossRefGoogle Scholar
Skurtys, O. & Aguilera, J. M. 2008 Applications of microfluidic devices in food engineering. Food Biophys. 3 (1), 115.CrossRefGoogle Scholar
Song, H., Chen, D. L. & Ismagilov, R. F. 2006 Reactions in droplets in microfluidic channels. Angew. Chem. Intl Ed. Engl. 45 (44), 73367356.CrossRefGoogle ScholarPubMed
Song, H., Tice, J. D. & Ismagilov, R. F. 2003 A microfluidic system for controlling reaction networks in time. Angew. Chem. Intl Ed. Engl. 42 (7), 768772.CrossRefGoogle ScholarPubMed
van Steijn, V., Kreutzer, M. T. & Kleijn, C. R. 2007 $\mu$-piv study of the formation of segmented flow in microfluidic T-junctions. Chem. Engng Sci. 62 (24), 75057514.CrossRefGoogle Scholar
Suea-Ngam, A., Rattanarat, P., Chailapakul, O. & Srisa-Art, M. 2015 Electrochemical droplet-based microfluidics using chip-based carbon paste electrodes for high-throughput analysis in pharmaceutical applications. Anal. Chim. Acta 883, 4554.CrossRefGoogle ScholarPubMed
Tan, S. H., Semin, B. & Baret, J. C. 2014 Microfluidic flow-focusing in AC electric fields. Lab on a Chip 14 (6), 10991106.CrossRefGoogle ScholarPubMed
Taylor, G. I. 1966 Studies in electrohydrodynamics. I. The circulation produced in a drop by an electric field. Proc. R. Soc. Lond. A 291 (1425), 159166.Google Scholar
Thorsen, T., Roberts, R. W., Arnold, F. H. & Quake, S. R. 2001 Dynamic pattern formation in a vesicle-generating microfluidic device. Phys. Rev. Lett. 86 (18), 4163.CrossRefGoogle Scholar
Tice, J. D., Lyon, A. D. & Ismagilov, R. F. 2004 Effects of viscosity on droplet formation and mixing in microfluidic channels. Anal. Chim. Acta 507 (1), 7377.CrossRefGoogle Scholar
Torza, S., Cox, R. G. & Mason, S. G. 1971 Electrohydrodynamic deformation and bursts of liquid drops. Phil. Trans. R. Soc. Lond. A 269 (1198), 295319.Google Scholar
Tseluiko, D. & Papageorgiou, D. T. 2006 Wave evolution on electrified falling films. J. Fluid Mech. 556, 361386.CrossRefGoogle Scholar
Umbanhowar, P. B., Prasad, V. & Weitz, D. A. 2000 Monodisperse emulsion generation via drop break off in a coflowing stream. Langmuir 16 (2), 347351.CrossRefGoogle Scholar
Wang, Q., Mählmann, S. & Papageorgiou, D. T. 2009 Dynamics of liquid jets and threads under the action of radial electric fields: microthread formation and touchdown singularities. Phys. Fluids 21 (3), 032109.CrossRefGoogle Scholar
Wehking, J. D., Chew, L. & Kumar, R. 2013 Droplet deformation and manipulation in an electrified microfluidic channel. Appl. Phys. Lett. 103 (5), 054101.CrossRefGoogle Scholar
Wehking, J. D. & Kumar, R. 2015 Droplet actuation in an electrified microfluidic network. Lab on a Chip 15 (3), 793801.CrossRefGoogle Scholar
Wibowo, C. & Ng, K. M. 2001 Product-oriented process synthesis and development: creams and pastes. AIChE J. 47 (12), 27462767.CrossRefGoogle Scholar
Wu, Y., Fu, T., Ma, Y. & Li, H. Z. 2013 Ferrofluid droplet formation and breakup dynamics in a microfluidic flow-focusing device. Soft Matt. 9 (41), 97929798.CrossRefGoogle Scholar
Xi, H. D., Guo, W., Leniart, M., Chong, Z. Z. & Tan, S. H. 2016 AC electric field induced droplet deformation in a microfluidic T-junction. Lab on a Chip 16 (16), 29822986.CrossRefGoogle Scholar
Xu, J. H., Li, S. W., Chen, G. G. & Luo, G. S. 2006 a Formation of monodisperse microbubbles in a microfluidic device. AIChE J. 52 (6), 22542259.CrossRefGoogle Scholar
Xu, J. H., Li, S. W., Tan, J., Wang, Y. J. & Luo, G. S. 2006 b Preparation of highly monodisperse droplet in a T-junction microfluidic device. AIChE J. 52 (9), 30053010.CrossRefGoogle Scholar
Xu, Q., Hashimoto, M., Dang, T. T., Hoare, T., Kohane, D. S., Whitesides, G. M., Langer, R. & Anderson, D. G. 2009 Preparation of monodisperse biodegradable polymer microparticles using a microfluidic flow-focusing device for controlled drug delivery. Small 5 (13), 15751581.CrossRefGoogle ScholarPubMed
Yin, H. & Marshall, D. 2012 Microfluidics for single cell analysis. Curr. Opin. Biotech. 23 (1), 110119.CrossRefGoogle ScholarPubMed
Zheng, B., Roach, L. S. & Ismagilov, R. F. 2003 Screening of protein crystallization conditions on a microfluidic chip using nanoliter-size droplets. J. Am. Chem. Soc. 125 (37), 1117011171.CrossRefGoogle ScholarPubMed