Hostname: page-component-68c7f8b79f-gx2m9 Total loading time: 0 Render date: 2025-12-23T17:21:04.162Z Has data issue: false hasContentIssue false

Electrically driven relaminarisation of particle-laden turbulent channel flow

Published online by Cambridge University Press:  22 December 2025

Yuankai Cui
Affiliation:
Center for Particle-laden Turbulence, Lanzhou University , Lanzhou, Gansu 730000, PR China
Xuelian Tan
Affiliation:
Center for Particle-laden Turbulence, Lanzhou University , Lanzhou, Gansu 730000, PR China
Huan Zhang*
Affiliation:
Center for Particle-laden Turbulence, Lanzhou University , Lanzhou, Gansu 730000, PR China
Xiaojing Zheng
Affiliation:
Research Center for Applied Mechanics, Xidian University, Xi’an 710071, PR China
*
Corresponding author: Huan Zhang, zhanghuan@lzu.edu.cn

Abstract

Electrical effects are known to play an important role in particle-laden flows, yet a holistic view of how they modulate turbulence remains elusive due to the complexity of multifield coupling. Here, we present a total of 119 direct numerical simulations of particle-laden turbulent channel flow that reveal a striking ability of electrical effects to induce turbulence relaminarisation and markedly alter wall drag. As expected, the transition from turbulence to laminar flow is accompanied by abrupt changes in the statistical properties of both the fluid and particulate phases. Nevertheless, with increasing electrical effects, the wall-normal profiles of the mean streamwise fluid velocity and mean local particle mass loading exhibit opposite trends in the turbulent and laminar regimes, arising from the competition between turbophoresis and electrostatic drift. We identify three distinct flow regimes resulting from the electrical effects: a drag-reduced turbulent regime, a drag-reduced laminar regime, and a drag-enhanced laminar regime. It is revealed that relaminarization originates from the complete suppression of the streak breakdown in the near-wall self-sustaining cycle, followed by the sequential inhibition of other subprocesses in the cycle. In the turbulent regime, increasing electrical effects induce opposing trends in Reynolds and particle stress contributions to drag, yielding a non-monotonic drag response. In laminar regimes, by contrast, the drag coefficient increases monotonically as the Reynolds stress vanishes and particle-induced stress becomes dominant.

Information

Type
JFM Papers
Copyright
© The Author(s), 2025. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

Footnotes

These authors contributed equally to this work and should be considered co-first authors.

References

Alipchenkov, V.M., Zaichik, L.I. & Petrov, O.F. 2004 Clustering of charged particles in isotropic turbulence. High Temp. 42, 919927.10.1007/s10740-005-0037-0CrossRefGoogle Scholar
Baddeley, P.F.H. 1860 Whirlwinds and Dust-Storms of India. Bell & Daldy.Google Scholar
Bakewell, H.P. Jr & Lumley, J.L. 1967 Viscous sublayer and adjacent wall region in turbulent pipe flow. Phys. Fluids 10, 18801889.10.1063/1.1762382CrossRefGoogle Scholar
Balachandar, S. & Eaton, J.K. 2010 Turbulent dispersed multiphase flow. Annu. Rev. Fluid Mech. 42, 111133.10.1146/annurev.fluid.010908.165243CrossRefGoogle Scholar
Bec, J., Gustavsson, K. & Mehlig, B. 2024 Statistical models for the dynamics of heavy particles in turbulence. Annu. Rev. Fluid Mech. 56, 189213.10.1146/annurev-fluid-032822-014140CrossRefGoogle Scholar
Boivin, M., Simonin, O. & Squires, K.D. 1998 Direct numerical simulation of turbulence modulation by particles in isotropic turbulence. J. Fluid Mech. 375, 235263.10.1017/S0022112098002821CrossRefGoogle Scholar
Boutsikakis, A., Fede, P. & Simonin, O. 2022 Effect of electrostatic forces on the dispersion of like-charged solid particles transported by homogeneous isotropic turbulence. J. Fluid Mech. 938, A33.10.1017/jfm.2022.189CrossRefGoogle Scholar
Brandt, L. & Coletti, F. 2022 Particle-laden turbulence: progress and perspectives. Annu. Rev. Fluid Mech. 54, 159189.10.1146/annurev-fluid-030121-021103CrossRefGoogle Scholar
Cimarelli, C., Alatorre-Ibargüengoitia, M.A., Kueppers, U., Scheu, B. & Dingwell, D.B. 2014 Experimental generation of volcanic lightning. Geology 42, 7982.10.1130/G34802.1CrossRefGoogle Scholar
Costa, P. 2018 A FFT-based finite-difference solver for massively-parallel direct numerical simulations of turbulent flows. Comput. Maths Appl. 76, 18531862.10.1016/j.camwa.2018.07.034CrossRefGoogle Scholar
Cranfield, R.H. 1929 Atmospheric electricity during sand storms. Science 69, 474475.10.1126/science.69.1792.474.bCrossRefGoogle Scholar
Crozier, W.D. 1964 The electric field of a New Mexico dust devil. J. Geophys. Res. 69, 54275429.10.1029/JZ069i024p05427CrossRefGoogle Scholar
Cui, Y., Zhang, H. & Zheng, X. 2024 Turbulence modulation by charged inertial particles in channel flow. J. Fluid Mech. 990, A2.10.1017/jfm.2024.508CrossRefGoogle Scholar
Eaton, J.K. & Fessler, J. 1994 Preferential concentration of particles by turbulence. Intl J. Multiphase Flow 20, 169209.10.1016/0301-9322(94)90072-8CrossRefGoogle Scholar
Ellingsen, T. & Palm, E. 1975 Stability of linear flow. Phys. Fluids 18, 487488.10.1063/1.861156CrossRefGoogle Scholar
Esposito, F., et al. 2016 The role of the atmospheric electric field in the dust-lifting process. Geophys. Res. Lett. 43, 55015508.10.1002/2016GL068463CrossRefGoogle Scholar
Farrell, W.M., Kaiser, M.L., Desch, M.D., Houser, J.G., Cummer, S.A., Wilt, D.M. & Landis, G.A. 1999 Detecting electrical activity from Martian dust storms. J. Geophys. Res. Planets 104, 37953801.10.1029/98JE02821CrossRefGoogle Scholar
Ferrante, A. & Elghobashi, S. 2003 On the physical mechanisms of two-way coupling in particle-laden isotropic turbulence. Phys. Fluids 15, 315329.10.1063/1.1532731CrossRefGoogle Scholar
Forward, K.M., Lacks, D.J. & Sankaran, R.M. 2009 Charge segregation depends on particle size in triboelectrically charged granular materials. Phys. Rev. Lett. 102, 028001.10.1103/PhysRevLett.102.028001CrossRefGoogle ScholarPubMed
Freier, G.D. 1960 The electric field of a large dust devil. J. Geophys. Res. 65, 3504.10.1029/JZ065i010p03504CrossRefGoogle Scholar
Fukagata, K., Iwamoto, K. & Kasagi, N. 2002 Contribution of Reynolds stress distribution to the skin friction in wall-bounded flows. Phys. Fluids 14, L73L76.10.1063/1.1516779CrossRefGoogle Scholar
Gao, W., Samtaney, R. & Richter, D.H. 2023 Direct numerical simulation of particle-laden flow in an open channel at ${\textit{Re}}_{\tau }=5186$ . J. Fluid Mech. 957, A3.10.1017/jfm.2023.26CrossRefGoogle Scholar
Gilbert, J.S., Lane, S.J., Sparks, R.S.J. & Koyaguchi, T. 1991 Charge measurements on particle fallout from a volcanic plume. Nature 349, 598600.10.1038/349598a0CrossRefGoogle Scholar
Grosshans, H. & Papalexandris, M.V. 2017 Direct numerical simulation of triboelectric charging in particle-laden turbulent channel flows. J. Fluid Mech. 818, 465491.10.1017/jfm.2017.157CrossRefGoogle Scholar
Hamilton, J.M. & Abernathy, F.H. 1994 Streamwise vortices and transition to turbulence. J. Fluid Mech. 264, 185212.10.1017/S0022112094000637CrossRefGoogle Scholar
Hamilton, J.M., Kim, J. & Waleffe, F. 1995 Regeneration mechanisms of near-wall turbulence structures. J. Fluid Mech. 287, 317348.10.1017/S0022112095000978CrossRefGoogle Scholar
Harris, D.J. 1967 Electrical effects of the Harmattan dust storms. Nature 214, 585585.10.1038/214585a0CrossRefGoogle Scholar
Harrison, R.G., et al. 2016 Applications of electrified dust and dust devil electrodynamics to Martian atmospheric electricity. Space Sci. Rev. 203, 299345.10.1007/s11214-016-0241-8CrossRefGoogle Scholar
Houghton, I.M.P., Aplin, K.L. & Nicoll, K.A. 2013 Triboelectric charging of volcanic ash from the 2011 Grímsvötn eruption. Phys. Rev. Lett. 111, 118501.10.1103/PhysRevLett.111.118501CrossRefGoogle ScholarPubMed
Hwang, Y. & Cossu, C. 2010 Self-sustained process at large scales in turbulent channel flow. Phys. Rev. Lett. 105, 044505.10.1103/PhysRevLett.105.044505CrossRefGoogle Scholar
Jantač, S. & Grosshans, H. 2024 Suppression and control of bipolar powder charging by turbulence. Phys. Rev. Lett. 132, 054004.10.1103/PhysRevLett.132.054004CrossRefGoogle ScholarPubMed
Jiménez, J. & Moin, P. 1991 The minimal flow unit in near-wall turbulence. J. Fluid Mech. 225, 213240.10.1017/S0022112091002033CrossRefGoogle Scholar
Jiménez, J. & Pinelli, A. 1999 The autonomous cycle of near-wall turbulence. J. Fluid Mech. 389, 335359.10.1017/S0022112099005066CrossRefGoogle Scholar
Johnson, P.L., Bassenne, M. & Moin, P. 2020 Turbophoresis of small inertial particles: theoretical considerations and application to wall-modelled large-eddy simulations. J. Fluid Mech. 883, A27.10.1017/jfm.2019.865CrossRefGoogle Scholar
Kamra, A.K. 1972 Physical sciences: visual observation of electric sparks on gypsum dunes. Nature 240, 143144.10.1038/240143a0CrossRefGoogle Scholar
Kim, J. & Moin, P. 1985 Application of a fractional-step method to incompressible Navier–Stokes equations. J. Comput. Phys. 59, 308323.10.1016/0021-9991(85)90148-2CrossRefGoogle Scholar
Kok, J.F. & Renno, N.O. 2006 Enhancement of the emission of mineral dust aerosols by electric forces. Geophys. Res. Lett. 33, L19S10.10.1029/2006GL026284CrossRefGoogle Scholar
Kok, J.F. & Renno, N.O. 2008 Electrostatics in wind-blown sand. Phys. Rev. Lett. 100, 014501.10.1103/PhysRevLett.100.014501CrossRefGoogle ScholarPubMed
Kolehmainen, J., Ozel, A., Boyce, C.M. & Sundaresan, S. 2016 A hybrid approach to computing electrostatic forces in fluidized beds of charged particles. AIChE J. 62 (7), 22822295.10.1002/aic.15279CrossRefGoogle Scholar
Lee, M. & Moser, R.D. 2015 Direct numerical simulation of turbulent channel flow up to ${\textit{Re}}_\tau \approx 5200$ . J. Fluid Mech. 774, 395415.10.1017/jfm.2015.268CrossRefGoogle Scholar
Lozano-Durán, A., Bae, H.J. & Encinar, M.P. 2020 Causality of energy-containing eddies in wall turbulence. J. Fluid Mech. 882, A2.10.1017/jfm.2019.801CrossRefGoogle Scholar
Lu, J., Nordsiek, H., Saw, E.W. & Shaw, R.A. 2010 Clustering of charged inertial particles in turbulence. Phys. Rev. Lett. 104, 184505.10.1103/PhysRevLett.104.184505CrossRefGoogle ScholarPubMed
Marchioli, C., Soldati, A., Kuerten, J.G.M., Arcen, B., Taniere, A., Goldensoph, G., Squires, K.D., Cargnelutti, M.F. & Portela, L.M. 2008 Statistics of particle dispersion in direct numerical simulations of wall-bounded turbulence: results of an international collaborative benchmark test. Intl J. Multiphase Flow 34, 879893.10.1016/j.ijmultiphaseflow.2008.01.009CrossRefGoogle Scholar
Maxey, M.R. 1987 The gravitational settling of aerosol particles in homogeneous turbulence and random flow fields. J. Fluid Mech. 174, 441465.10.1017/S0022112087000193CrossRefGoogle Scholar
Maxey, M.R. & Riley, J.J. 1983 Equation of motion for a small rigid sphere in a nonuniform flow. Phys. Fluids 26, 883889.10.1063/1.864230CrossRefGoogle Scholar
Méndez Harper, J.S., McDonald, G.D., Dufek, J., Malaska, M.J., Burr, D.M., Hayes, A.G., McAdams, J. & Wray, J.J. 2017 Electrification of sand on Titan and its influence on sediment transport. Nat. Geosci. 10, 260265.10.1038/ngeo2921CrossRefGoogle Scholar
Motoori, Y. & Goto, S. 2025 Attenuation mechanism of wall-bounded turbulence by heavy finite-size particles. J. Fluid Mech. 1014, A30.10.1017/jfm.2025.10318CrossRefGoogle Scholar
Motoori, Y., Wong, C. & Goto, S. 2022 Role of the hierarchy of coherent structures in the transport of heavy small particles in turbulent channel flow. J. Fluid Mech. 942, A3.10.1017/jfm.2022.327CrossRefGoogle Scholar
Owen, P.R. 1969 Pneumatic transport. J. Fluid Mech. 39, 407432.10.1017/S0022112069002242CrossRefGoogle Scholar
Poelma, C. & Ooms, G. 2006 Particle–turbulence interaction in a homogeneous, isotropic turbulent suspension. ASME Appl. Mech. Rev. 59, 7890.10.1115/1.2130361CrossRefGoogle Scholar
Pope, S.B. 2000 Turbulent Flows. Cambridge University Press.Google Scholar
Rahman, M.M., Saieed, A. & Hickey, J.P. 2023 Turbulence-induced electrical discharges in charged particle-laden Martian boundary layers. Flow 3, E34.10.1017/flo.2023.28CrossRefGoogle Scholar
Reddy, S.C., Schmid, P.J., Baggett, J.S. & Henningson, D.S. 1998 On stability of streamwise streaks and transition thresholds in plane channel flows. J. Fluid Mech. 365, 269303.10.1017/S0022112098001323CrossRefGoogle Scholar
Richter, D.H. & Sullivan, P.P. 2013 Momentum transfer in a turbulent, particle-laden Couette flow. Phys. Fluids 25, 055103.10.1063/1.4804391CrossRefGoogle Scholar
Ruan, X., Diaz-Lopez, M.X., Gorman, M.T. & Ni, R. 2025 Direct numerical simulations on transport and deposition of charged inertial particles in turbulent channel flow. J. Fluid Mech. 1010, A49.10.1017/jfm.2025.315CrossRefGoogle Scholar
Ruan, X., Gorman, M.T. & Ni, R. 2024 Effects of electrostatic interaction on clustering and collision of bidispersed inertial particles in homogeneous and isotropic turbulence. J. Fluid Mech. 980, A29.10.1017/jfm.2023.1054CrossRefGoogle Scholar
Rudge, W.A.D. 1913 Atmospheric electrification during South African dust storms. Nature 91, 3132.10.1038/091031a0CrossRefGoogle Scholar
Schiller, L. & Naumann, A. 1935 A drag coefficient correlation. Z. Verein. Deutsch. Ing. 77, 318320.Google Scholar
Schmidt, D.S., Schmidt, R.A. & Dent, J.D. 1998 Electrostatic force on saltating sand. J. Geophys. Res.: Atmos. 103, 89979001.10.1029/98JD00278CrossRefGoogle Scholar
Schmidt, D.S., Schmidt, R.A. & Dent, J.D. 1999 Electrostatic force in blowing snow. Boundary-Layer Meteorol. 93, 2945.10.1023/A:1002045818907CrossRefGoogle Scholar
Shinbrot, T. & Herrmann, H.J. 2008 Static in motion. Nature 451, 773774.10.1038/451773aCrossRefGoogle ScholarPubMed
Sippola, P., Kolehmainen, J., Ozel, A., Liu, X., Saarenrinne, P. & Sundaresan, S. 2018 Experimental and numerical study of wall layer development in a tribocharged fluidized bed. J. Fluid Mech. 849, 860884.10.1017/jfm.2018.412CrossRefGoogle Scholar
Squires, K.D. & Eaton, J.K. 1990 Particle response and turbulence modification in isotropic turbulence. Phys. Fluids 2, 11911203.10.1063/1.857620CrossRefGoogle Scholar
Stow, C.D. 1969 Dust and sand storm electrification. Weather 24, 134144.10.1002/j.1477-8696.1969.tb03165.xCrossRefGoogle Scholar
Sundaram, S. & Collins, L.R. 1999 A numerical study of the modulation of isotropic turbulence by suspended particles. J. Fluid Mech. 379, 105143.10.1017/S0022112098003073CrossRefGoogle Scholar
Vreman, A. 2015 Turbulence attenuation in particle-laden flow in smooth and rough channels. J. Fluid Mech. 773, 103136.10.1017/jfm.2015.208CrossRefGoogle Scholar
Waleffe, F. 1997 On a self-sustaining process in shear flows. Phys. Fluids 9, 883900.10.1063/1.869185CrossRefGoogle Scholar
Wang, G. & Richter, D.H. 2019 Modulation of the turbulence regeneration cycle by inertial particles in planar Couette flow. J. Fluid Mech. 861, 901929.10.1017/jfm.2018.936CrossRefGoogle Scholar
Xia, Y., Yu, Z., Lin, Z. & Guo, Y. 2022 Improved modelling of interfacial terms in the second-moment closure for particle-laden flows based on interface-resolved simulation data. J. Fluid Mech. 952, A25.10.1017/jfm.2022.927CrossRefGoogle Scholar
Xu, A., Xu, B.R. & Xi, H.D. 2024 Particle transport and deposition in wall-sheared thermal turbulence. J. Fluid Mech. 999, A15.10.1017/jfm.2024.936CrossRefGoogle Scholar
Yu, Z., Lin, Z., Shao, X. & Wang, L.P. 2017 Effects of particle–fluid density ratio on the interactions between the turbulent channel flow and finite-size particles. Phys. Rev. E 96, 033102.10.1103/PhysRevE.96.033102CrossRefGoogle ScholarPubMed
Yu, Z., Xia, Y., Guo, Y. & Lin, J. 2021 Modulation of turbulence intensity by heavy finite-size particles in upward channel flow. J. Fluid Mech. 913, A3.10.1017/jfm.2020.1140CrossRefGoogle Scholar
Zhang, H., Cui, Y. & Zheng, X. 2023 How electrostatic forces affect particle behaviour in turbulent channel flows. J. Fluid Mech. 967, A8.10.1017/jfm.2023.459CrossRefGoogle Scholar
Zhang, H. 2024 Structure and coupling characteristics of multiple fields in dust storms. Acta Mech. Sin. 40, 123339.10.1007/s10409-023-23339-xCrossRefGoogle Scholar
Zhang, H., Tan, X. & Zheng, X. 2023 Multifield intermittency of dust storm turbulence in the atmospheric surface layer. J. Fluid Mech. 963, A15.10.1017/jfm.2023.278CrossRefGoogle Scholar
Zhang, H. & Zheng, X. 2025 Wavelet analysis of the coupling between turbulence, particles and electrostatics in dust storms. J. Fluid Mech. 1007, A8.10.1017/jfm.2025.112CrossRefGoogle Scholar
Zhang, H. & Zhou, Y.H. 2020 Reconstructing the electrical structure of dust storms from locally observed electric field data. Nat. Commun. 11, 5072.10.1038/s41467-020-18759-0CrossRefGoogle ScholarPubMed
Zhang, H. & Zhou, Y.H. 2023 Unveiling the spectrum of electrohydrodynamic turbulence in dust storms. Nat. Commun. 14, 408.10.1038/s41467-023-36041-xCrossRefGoogle ScholarPubMed
Zhao, L., Andersson, H.I. & Gillissen, J.J. 2013 Interphasial energy transfer and particle dissipation in particle-laden wall turbulence. J. Fluid Mech. 715, 3259.10.1017/jfm.2012.492CrossRefGoogle Scholar
Zhao, Y., Liu, M., Li, J., Yan, Y. & Yao, J. 2022 Modulation of turbulence by dispersed charged particles in pipe flow. Phys. Fluids 34, 123315.10.1063/5.0130487CrossRefGoogle Scholar
Zheng, X. 2009 Mechanics of Wind-Blown Sand Movements. Springer Science & Business Media.10.1007/978-3-540-88254-1CrossRefGoogle Scholar
Zheng, X., Feng, S. & Wang, P. 2021 Modulation of turbulence by saltating particles on erodible bed surface. J. Fluid Mech. 918, A16.10.1017/jfm.2021.329CrossRefGoogle Scholar
Zheng, X.J. 2013 Electrification of wind-blown sand: recent advances and key issues. Eur. Phys. J. E 36, 138.10.1140/epje/i2013-13138-4CrossRefGoogle ScholarPubMed
Zheng, X.J., Huang, N. & Zhou, Y.H. 2003 Laboratory measurement of electrification of wind-blown sands and simulation of its effect on sand saltation movement. J. Geophys. Res.: Atmos. 108, 4322.Google Scholar
Zheng, X.J., Huang, N. & Zhou, Y.H. 2006 The effect of electrostatic force on the evolution of sand saltation cloud. Eur. Phys. J. E 19, 129138.10.1140/epje/e2006-00020-9CrossRefGoogle ScholarPubMed