Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-27T01:17:36.935Z Has data issue: false hasContentIssue false

Effects of an along-shelf current on the generation of internal tides near the critical latitude

Published online by Cambridge University Press:  15 December 2021

Yangxin He*
Affiliation:
Department of Applied Math, University of Waterloo, Waterloo, ON N2L 3G1, Canada
Kevin G. Lamb*
Affiliation:
Department of Applied Math, University of Waterloo, Waterloo, ON N2L 3G1, Canada
*
Email addresses for correspondence: y67he@uwaterloo.ca, kglamb@uwaterloo.ca
Email addresses for correspondence: y67he@uwaterloo.ca, kglamb@uwaterloo.ca

Abstract

The effects of along-shelf barotropic geostrophic currents on internal wave generation by the $K_1$ tide interacting with a shelf at near-critical latitudes are investigated. The horizontal shear of the background current results in a spatially varying effective Coriolis frequency which modifies the slope criticality and potentially creates blocking regions where freely propagating internal tides cannot exist. This paper is focused on the barotropic to baroclinic energy conversion rate, which is affected by a combination of three factors: slope criticality, size and location of the blocking region where the conversion rate is extremely small and the internal tide (IT) beam patterns. All of these are sensitive to the current parameters. In our parameter space, the current can increase the conversion rate up to 10 times.

Type
JFM Papers
Copyright
© The Author(s), 2021. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Baines, P.G. 1973 The generation of internal tides by flat-bump topography. Deep Sea Res. 20, 179205.Google Scholar
Baines, P.G. 1982 On internal tide generation models. Deep Sea Res. A 29 (3), 307338.CrossRefGoogle Scholar
Balmforth, N.J., Ierley, G.R. & Young, W.R. 2002 Tidal conversion by subcritical topography. J. Phys. Oceanogr. 32 (10), 29002914.2.0.CO;2>CrossRefGoogle Scholar
Bell, T.H. 1975 Topographically generated internal waves in the open ocean. J. Geophys. Res. 80 (3), 320327.CrossRefGoogle Scholar
Cacchione, D.A., Pratson, L.F. & Ogston, A.S. 2002 The shaping of continental slopes by internal tides. Science 296 (5568), 724727.CrossRefGoogle ScholarPubMed
Chavanne, C., Flament, P., Luther, D. & Gurgel, K.W. 2010 The surface expression of semidiurnal internal tides near a strong source at Hawaii. Part II: interactions with mesoscale currents. J. Phys. Oceanogr. 40 (6), 11801200.CrossRefGoogle Scholar
Chuang, W.-S. & Wang, D.-P. 1981 Effects of density front on the generation and propagation of internal tides. J. Phys. Oceanogr. 11 (10), 13571374.2.0.CO;2>CrossRefGoogle Scholar
Craig, P.D. 1987 Solutions for internal tidal generation over coastal topography. J. Mar. Res. 45 (1), 83105.CrossRefGoogle Scholar
Dong, J., Robertson, R., Dong, C., Hartlipp, P.S., Zhou, T., Shao, Z., Lin, W., Zhou, M. & Chen, J. 2019 Impacts of mesoscale currents on the diurnal critical latitude dependence of internal tides: a numerical experiment based on Barcoo Seamount. J. Geophys. Res.: Oceans 124 (4), 24522471.CrossRefGoogle Scholar
Eckart, C. 1961 Internal waves in the ocean. Phys. Fluids 4 (7), 791799.CrossRefGoogle Scholar
Garrett, C. & Kunze, E. 2007 Internal tide generation in the deep ocean. Annu. Rev. Fluid Mech. 39, 5787.CrossRefGoogle Scholar
Gerkema, T. 2002 Application of an internal tide generation model to baroclinic spring-neap cycles. J. Geophys. Res.: Oceans 107 (C9), 3124.CrossRefGoogle Scholar
Gerkema, T., Lam, F.-P.A. & Maas, L.R.M. 2004 Internal tides in the Bay of Biscay: conversion rates and seasonal effects. Deep-Sea Res. II 51 (25–26), 29953008.CrossRefGoogle Scholar
Hall, M.M. & Bryden, H.L. 1982 Direct estimates and mechanisms of ocean heat transport. Deep Sea Res. A 29 (3), 339359.CrossRefGoogle Scholar
Holloway, P.E. 1996 A numerical model of internal tides with application to the Australian North West Shelf. J. Phys. Oceanogr. 26 (1), 2137.2.0.CO;2>CrossRefGoogle Scholar
Holloway, P.E., Chatwin, P.G. & Craig, P. 2001 Internal tide observations from the Australian North West Shelf in summer 1995. J. Phys. Oceanogr. 31 (5), 11821199.2.0.CO;2>CrossRefGoogle Scholar
Holloway, P.E. & Merrifield, M.A. 1999 Internal tide generation by seamounts, ridges, and islands. J. Geophys. Res.: Oceans 104 (C11), 2593725951.CrossRefGoogle Scholar
Jones, W.L. 1970 A theory for quasi-periodic oscillations observed in the ionosphere. J. Atmos. Terrest. Phys. 32 (9), 15551566.CrossRefGoogle Scholar
Kang, D. & Fringer, O. 2012 Energetics of barotropic and baroclinic tides in the Monterey Bay area. J. Phys. Oceanogr. 42 (2), 272290.CrossRefGoogle Scholar
Khatiwala, S. 2003 Generation of internal tides in an ocean of finite depth: analytical and numerical calculations. Deep-Sea Res. I 50 (1), 321.CrossRefGoogle Scholar
Kolomoitseva, E.M. & Cherkesov, L.V. 1999 Generation of internal waves in the region of a bottom ridge with continuously varying height. Phys. Oceanogr. 9 (6), 433443.CrossRefGoogle Scholar
Kunze, E. 1985 Near-inertial wave propagation in geostrophic shear. J. Phys. Oceanogr. 15 (5), 544565.2.0.CO;2>CrossRefGoogle Scholar
Kunze, E., Rosenfeld, L.K., Carter, G.S. & Gregg, M.C. 2002 Internal waves in Monterey submarine canyon. J. Phys. Oceanogr. 32 (6), 18901913.2.0.CO;2>CrossRefGoogle Scholar
Kurapov, A.L., Allen, J.S. & Egbert, G.D. 2010 Combined effects of wind-driven upwelling and internal tide on the continental shelf. J. Phys. Oceanogr. 40 (4), 737756.CrossRefGoogle Scholar
Lamb, K.G. & Kim, J. 2012 Conversion of barotropic tidal energy to internal wave energy over a shelf slope for a linear stratification. Cont. Shelf Res. 33, 6988.CrossRefGoogle Scholar
Legg, S. & Huijts, K.M.H. 2006 Preliminary simulations of internal waves and mixing generated by finite amplitude tidal flow over isolated topography. Deep-Sea Res. II 53 (1–2), 140156.CrossRefGoogle Scholar
Li, Q., Mao, X., Huthnance, J., Cai, S. & Kelly, S. 2019 On internal waves propagating across a geostrophic front. J. Phys. Oceanogr. 49 (5), 12291248.CrossRefGoogle Scholar
Lien, R.-C. & Gregg, M.C. 2001 Observations of turbulence in a tidal beam and across a coastal ridge. J. Geophys. Res.: Oceans 106 (C3), 45754591.CrossRefGoogle Scholar
Llewellyn Smith, S.G. & Young, W.R. 2002 Conversion of the barotropic tide. J. Phys. Oceanogr. 32 (5), 15541566.2.0.CO;2>CrossRefGoogle Scholar
Lueck, R.G. & Mudge, T.D. 1997 Topographically induced mixing around a shallow seamount. Science 276 (5320), 18311833.CrossRefGoogle Scholar
Marshall, J., Adcroft, A., Hill, C., Perelman, L. & Heisey, C. 1997 A finite-volume, incompressible Navier stokes model for studies of the ocean on parallel computers. J. Geophys. Res.: Oceans 102 (C3), 57535766.CrossRefGoogle Scholar
Martin, J.P., Rudnick, D.L. & Pinkel, R. 2006 Spatially broad observations of internal waves in the upper ocean at the Hawaiian ridge. J. Phys. Oceanogr. 36 (6), 10851103.CrossRefGoogle Scholar
Merrifield, M.A., Holloway, P.E. & Johnston, T.M.S. 2001 The generation of internal tides at the Hawaiian Ridge. Geophys. Res. Lett. 28 (4), 559562.CrossRefGoogle Scholar
Monserrat, S. & Thorpe, A.J. 1996 Use of ducting theory in an observed case of gravity waves. J. Atmos. Sci. 53 (12), 17241736.2.0.CO;2>CrossRefGoogle Scholar
Mooers, C.N.K. 1975 Several effects of a baroclinic current on the cross-stream propagation of inertial-internal waves. Geophys. Astrophys. Fluid Dyn. 6 (3), 245275.CrossRefGoogle Scholar
Munk, W. & Wunsch, C. 1998 Abyssal recipes II: energetics of tidal and wind mixing. Deep-Sea Res I 45 (12), 19772010.CrossRefGoogle Scholar
Munroe, J.R. & Lamb, K.G. 2005 Topographic amplitude dependence of internal wave generation by tidal forcing over idealized three-dimensional topography. J. Geophys. Res.: Oceans 110 (C2), CO2001.CrossRefGoogle Scholar
New, A.L. & Pingree, R.D. 1992 Local generation of internal soliton packets in the central Bay of Biscay. Deep Sea Res. A 39 (9), 15211534.CrossRefGoogle Scholar
Niwa, Y. & Hibiya, T. 2004 Three-dimensional numerical simulation of m2 internal tides in the East China Sea. J. Geophys. Res.: Oceans 109, C04027.Google Scholar
Niwa, Y. & Hibiya, T. 2011 Estimation of baroclinic tide energy available for deep ocean mixing based on three-dimensional global numerical simulations. J. Oceanogr. 67 (4), 493502.CrossRefGoogle Scholar
Niwa, Y. & Hibiya, T. 2014 Generation of baroclinic tide energy in a global three-dimensional numerical model with different spatial grid resolutions. Ocean Model. 80, 5973.CrossRefGoogle Scholar
Nycander, J. 2006 Tidal generation of internal waves from a periodic array of steep ridges. J. Fluid Mech. 567, 415432.CrossRefGoogle Scholar
Pacanowski, R.C. & Philander, S.G.H. 1981 Parameterization of vertical mixing in numerical models of tropical oceans. J. Phys. Oceanogr. 11 (11), 14431451.2.0.CO;2>CrossRefGoogle Scholar
Pétrélis, F., Smith, S.L. & Young, W.R. 2006 Tidal conversion at a submarine ridge. J. Phys. Oceanogr. 36 (6), 10531071.CrossRefGoogle Scholar
Polzin, K.L., Toole, J.M., Ledwell, J.R. & Schmitt, R.W. 1997 Spatial variability of turbulent mixing in the abyssal ocean. Science 276 (5309), 9396.CrossRefGoogle ScholarPubMed
Powell, B.S., Janeković, I., Carter, G.S. & Merrifield, M.A. 2012 Sensitivity of internal tide generation in Hawaii. Geophys. Res. Lett. 39, L10606.CrossRefGoogle Scholar
Rainville, L. & Pinkel, R. 2004 Observations of energetic high-wavenumber internal waves in the Kuroshio. J. Phys. Oceanogr. 34 (7), 14951505.2.0.CO;2>CrossRefGoogle Scholar
Rainville, L. & Pinkel, R. 2006 Propagation of low-mode internal waves through the ocean. J. Phys. Oceanogr. 36 (6), 12201236.CrossRefGoogle Scholar
Richet, O., Muller, C. & Chomaz, J.-M. 2017 Impact of a mean current on the internal tide energy dissipation at the critical latitude. J. Phys. Oceanogr. 47 (6), 14571472.CrossRefGoogle Scholar
Schafstall, J., Dengler, M., Brandt, P. & Bange, H. 2010 Tidal-induced mixing and diapycnal nutrient fluxes in the Mauritanian upwelling region. J. Geophys. Res.: Oceans 115, C10014.Google Scholar
Simmons, H.L. & Alford, M.H. 2012 Simulating the long-range swell of internal waves generated by ocean storms. Oceanography 25 (2), 3041.CrossRefGoogle Scholar
Simmons, H.L., Hallberg, R.W. & Arbic, B.K. 2004 Internal wave generation in a global baroclinic tide model. Deep-Sea Res. II 51 (25–26), 30433068.CrossRefGoogle Scholar
Smagorinsky, J. 1993 Large Eddy Simulation of Complex Engineering and Geophysical Flows. Cambridge University Press.Google Scholar
St. Laurent, L. & Garrett, C. 2002 The role of internal tides in mixing the deep ocean. J. Phys. Oceanogr. 32 (10), 28822899.2.0.CO;2>CrossRefGoogle Scholar
St. Laurent, L., Stringer, S., Garrett, C. & Perrault-Joncas, D. 2003 The generation of internal tides at abrupt topography. Deep-Sea Res. I 50 (8), 9871003.CrossRefGoogle Scholar
Stammer, D., et al. 2014 Accuracy assessment of global barotropic ocean tide models. Rev. Geophys. 52 (3), 243282.CrossRefGoogle Scholar
Stashchuk, N., Vlasenko, V., Hosegood, P. & Nimmo-Smith, W.A.M. 2017 Tidally induced residual current over the Malin sea continental slope. Cont. Shelf Res. 139, 2134.CrossRefGoogle Scholar
Sutherland, B.R. & Yewchuk, K. 2004 Internal wave tunnelling. J. Fluid Mech. 511, 125134.CrossRefGoogle Scholar
Toole, J.M., Schmitt, R.W., Polzin, K.L. & Kunze, E. 1997 Near-boundary mixing above the flanks of a midlatitude seamount. J. Geophys. Res.: Oceans 102 (C1), 947959.CrossRefGoogle Scholar
Vic, C., Garabato, A.C.N., Green, J.A.M., Waterhouse, A.F., Zhao, Z., Melet, A., De Lavergne, C., Buijsman, M.C. & Stephenson, G.R. 2019 Deep-ocean mixing driven by small-scale internal tides. Nat. Commun. 10 (1), 2099.CrossRefGoogle ScholarPubMed
Vlasenko, V., Stashchuk, N. & Hutter, K. 2005 Baroclinic Tides: Theoretical Modeling and Observational Evidence. Cambridge University Press.CrossRefGoogle Scholar
Whitt, D.B. & Thomas, L.N. 2013 Near-inertial waves in strongly baroclinic currents. J. Phys. Oceanogr. 43 (4), 706725.CrossRefGoogle Scholar
Wunsch, C. & Ferrari, R. 2004 Vertical mixing, energy, and the general circulation of the oceans. Annu. Rev. Fluid Mech. 36, 281314.CrossRefGoogle Scholar
Xing, J. & Davies, A.M. 1998 A three-dimensional model of internal tides on the Malin-Hebrides shelf and shelf edge. J. Geophys. Res.: Oceans 103 (C12), 2782127847.CrossRefGoogle Scholar
Zilberman, N.V., Becker, J.M., Merrifield, M.A. & Carter, G.S. 2009 Model estimates of M2 internal tide generation over mid-atlantic ridge topography. J. Phys. Oceanogr. 39 (10), 26352651.CrossRefGoogle Scholar