Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-27T00:29:00.582Z Has data issue: false hasContentIssue false

Effect of long-range Coulomb repulsion on adhesive particle agglomeration in homogeneous isotropic turbulence

Published online by Cambridge University Press:  31 March 2021

Xuan Ruan
Affiliation:
Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Department of Energy and Power Engineering, Tsinghua University, Beijing100084, PR China
Sheng Chen
Affiliation:
State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan430074, PR China
Shuiqing Li*
Affiliation:
Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Department of Energy and Power Engineering, Tsinghua University, Beijing100084, PR China
*
 Email address for correspondence: lishuiqing@tsinghua.edu.cn

Abstract

We conduct numerical investigations on the early-stage agglomeration of identically charged microparticles in homogeneous isotropic turbulence. The turbulent flow field is evolved by direct numerical simulation, and the adhesive discrete element method is employed to simulate particle transport and agglomerate formation. Through extensive simulations, the effect of Coulomb repulsion on collision frequency is examined. As the particle charge increases, the collision kernel, when plotted as a function of the Stokes number St, is found to change from the increasing trend to the decreasing trend. From decomposition analysis, it turns out that this monotonicity inversion is caused by the shifting of the dominant collision mechanism from preferential concentration to the sling effect. Besides, once particles contact with each other, the sticking probability is shown to solely depend on the dimensionless adhesion parameter, $A{d_n}$, revealing the major role of interparticle adhesion in the collision process. When the effects of Coulomb repulsion and adhesion both exist, particles with moderate collision velocities are more likely to contribute to the formation of agglomerates. The structure of the agglomerates is then measured using the fractal dimension. It is found that, due to its isotropic feature, Coulomb repulsion effectively reduces the agglomeration rate but has a negligible effect on the structure of agglomerates.

Type
JFM Papers
Copyright
© The Author(s), 2021. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Agasthya, L., Picardo, J., Ravichandran, S., Govindarajan, S. & Ray, S. 2019 Understanding droplet collisions through a model flow: insight from a Burgers vortex. Phys. Rev. E 99, 063107.CrossRefGoogle Scholar
Almohammed, N. & Breuer, M. 2016 Modeling and simulation of agglomeration in turbulent particle-laden flows: a comparison between energy-based and momentum-based agglomeration models. Powder Technol. 294, 373402.CrossRefGoogle Scholar
Balachandar, S. & Eaton, J. 2009 Turbulent dispersed multiphase flow. Annu. Rev. Fluid Mech. 42, 111133.CrossRefGoogle Scholar
Balkovsky, E., Falkovich, G. & Fouxon, A. 2001 Intermittent distribution of inertial particles in turbulent flows. Phy. Rev. Lett. 86, 27902793.CrossRefGoogle ScholarPubMed
Balme, M. & Greeley, R. 2006 Dust devils on Earth and Mars. Rev. Geophys. 44, RG3003.CrossRefGoogle Scholar
Barnes, J. & Hut, P. 1986 A hierarchical O(NlogN) force-calculation algorithm. Nature 324, 446449.CrossRefGoogle Scholar
Bec, J., Biferale, L., Cencini, M., Lanotte, A., Musacchio, S. & Toschi, F. 2007 Heavy particle concentration in turbulence at dissipative and inertial scales. Phys. Rev. Lett. 98, 084502.CrossRefGoogle ScholarPubMed
Bec, J., Homann, H. & Ray, S. 2014 Gravity-driven enhancement of heavy particle clustering in turbulent flow. Phys. Rev. Lett. 112, 184501.CrossRefGoogle ScholarPubMed
Bec, J., Musacchio, S. & Ray, S. 2013 Sticky elastic collisions. Phys. Rev. E 87, 063013.CrossRefGoogle ScholarPubMed
Bec, J., Ray, S., Saw, E. & Homann, H. 2016 Abrupt growth of large aggregates by correlated coalescences in turbulent flow. Phys. Rev. E 93, 031102(R).CrossRefGoogle ScholarPubMed
Bewley, G., Saw, E. & Bodenschartz, E. 2013 Observation of the sling effect. New J. Phys. 15, 083051.CrossRefGoogle Scholar
Bhatnagar, A., Gustavsson, K., Mehlig, B. & Mitra, D. 2018 a Relative velocities in bidisperse turbulent aerosols: simulations and theory. Phys. Rev. E 98, 063107.CrossRefGoogle Scholar
Bhatnagar, A., Gustavsson, K. & Mitra, D. 2018 b Statistics of the relative velocity of particles in turbulent flows: monodisperse particles. Phys. Rev. E 97, 023105.CrossRefGoogle ScholarPubMed
Boutsikakis, A., Fede, P., Pedrono, A. & Simonin, O. 2020 Numerical simulations of short- and long-range interaction forces in turbulent particle-laden gas flows. Flow Turbul. Combust. 105, 9891015.CrossRefGoogle Scholar
Breuer, M. & Almohammed, N. 2015 Modelling and simulation of particle agglomeration in turbulent flows using a hard-sphere model with deterministic collision detection and enhanced structure models. Intl J. Multiphase Flow 73, 171206.CrossRefGoogle Scholar
Calzavarini, E., Cencini, M., Lohse, D. & Toschi, F. 2008 b Quantifying turbulence-induced segregation of inertial particles. Phys. Rev. Lett. 101, 084504.CrossRefGoogle ScholarPubMed
Calzavarini, E., Kerscher, M., Lohse, D. & Toschi, F. 2008 a Dimensionality and morphology of particle and bubble clusters in turbulent flow. J. Fluid Mech. 607, 1324.CrossRefGoogle Scholar
Chen, S. & Li, S. 2020 Collision-induced breakage of agglomerates in homogeneous isotropic turbulence laden with adhesive particles. J. Fluid Mech. 902, A28.CrossRefGoogle Scholar
Chen, S., Li, S., Liu, W. & Makse, H. 2016 a Effect of long-rang repulsive Coulomb interactions on packing structure of adhesive particles. Soft Matt. 12, 18361846.CrossRefGoogle Scholar
Chen, S., Li, S. & Marshall, J. 2019 a Exponential scaling in early-stage agglomeration of adhesive particles in turbulence. Phys. Rev. Fluids 4, 024304.CrossRefGoogle Scholar
Chen, S., Li, S. & Yang, M. 2015 Sticking/rebound criterion for collisions of small adhesive particles: effects of impact parameter and particle size. Powder Technol. 274, 431440.CrossRefGoogle Scholar
Chen, S., Liu, W. & Li, S. 2016 b Effect of long-range electrostatic repulsion on pore clogging during microfiltration. Phys. Rev. E 84, 063108.CrossRefGoogle Scholar
Chen, S., Liu, W. & Li, S. 2019 b A fast adhesive discrete element method for random packings of fine particles. Chem. Engng Sci. 193, 336345.CrossRefGoogle Scholar
Chu, J. & Lin, I. 1994 Direct observation of Coulomb crystals and liquids in strongly coupled RF dusty plasmas. Phys. Rev. Lett. 72, 4009.CrossRefGoogle ScholarPubMed
Chun, J., Koch, D., Rani, S., Ahluwalia, A. & Collins, L. 2005 Clustering of aerosol particles in isotropic turbulence. J. Fluid Mech. 536, 219251.CrossRefGoogle Scholar
Di Felice, R. 1994 The voidage function for fluid-particle interaction systems. Intl J. Multiphase Flow 20, 153159.CrossRefGoogle Scholar
Di Renzo, M. & Urzay, J. 2018 Aerodynamic generation of electric fields in turbulence laden with charged inertial particles. Nature Commun. 9, 1676.CrossRefGoogle ScholarPubMed
Dizaji, F. & Marshall, J. 2017 On the significance of two-way coupling in simulation of turbulent particle agglomeration. Powder Technol. 318, 8394.CrossRefGoogle Scholar
Dou, Z., Bragg, A., Hammond, A., Liang, Z., Collins, L. & Meng, H. 2018 Effect of Reynolds number and Stoke number on particle-pair relative velocity in isotropic turbulence: a systematic experimental study. J. Fluid Mech. 839, 271292.CrossRefGoogle Scholar
Eaton, J. & Fessler, J. 1994 Preferential concentration of particles by turbulence. Intl J. Multiphase Flow 20, 169209.CrossRefGoogle Scholar
Falkovich, G., Fouxon, A. & Stepanov, M. 2002 Acceleration of rain initiation by cloud turbulence. Nature 419, 151154.CrossRefGoogle ScholarPubMed
Falkovich, G., Gawedzki, K. & Vergassola, M. 2001 Particles and fields in fluid turbulence. Rev. Mod. Phys. 73, 913975.CrossRefGoogle Scholar
Falkocivh, G. & Pumir, A. 2007 Sling effect in collisions or water droplets in turbulent clouds. J. Atmos. Sci. 64, 44974505.Google Scholar
Fang, Z., Wang, H., Zhang, Y., Wei, M., Wu, X. & Sun, L. 2019 A finite element method (FEM) study on adhesive particle-wall normal collision. J. Aero. Sci. 134, 8094.CrossRefGoogle Scholar
Fortov, V., et al. 2003 Transport of microparticles in weakly ionized gas-discharge plasmas under microgravity conditions. Phys. Rev. Lett. 90, 245005.CrossRefGoogle ScholarPubMed
Gilbert, J., Lane, S., Sparks, R. & Koyaguchi, T. 1991 Charge measurements on particle fallout from a volcanic plume. Nature 349, 598600.CrossRefGoogle Scholar
Goto, S. & Vassilicos, J. 2008 Sweep-stick mechanism of heavy particle clustering in fluid turbulence. Phys. Rev. Lett. 100, 054503.CrossRefGoogle ScholarPubMed
Grabowski, W. & Wang, L. 2013 Growth of cloud droplets in a turbulent environment. Annu. Rev. Fluid Mech. 45, 293324.CrossRefGoogle Scholar
Gupta, M., Chaudhuri, P., Bec, J. & Ray, S. 2018 Turbulent route to two-dimensional soft crystals. arXiv:1812.06487v1.Google Scholar
Gustavsson, K. & Mehlig, B. 2014 Relative velocities of inertial particles in turbulent aerosols. J. Turbul. 15, 3469.CrossRefGoogle Scholar
Ireland, P., Bragg, A. & Collins, L. 2016 a The effect of Reynolds number on inertial particle dynamics in isotropic turbulence: part 1. Simulations without gravitational effects. J. Fluid Mech. 796, 617658.CrossRefGoogle Scholar
Ireland, P., Bragg, A. & Collins, L. 2016 b The effect of Reynolds number on inertial particle dynamics in isotropic turbulence: part 2. Simulations witht gravitational effects. J. Fluid Mech. 796, 659711.CrossRefGoogle Scholar
Israelachvili, J. 2011 Intermolecular and Surface Forces. Academic Press.Google Scholar
Ivelev, A., Morfill, G. & Konopka, U. 2002 Coagulation of charged microparticles in neutral gas and charge-induced gel transition. Phys. Rev. Lett. 89, 195502.CrossRefGoogle Scholar
James, M. & Ray, S. 2017 Enhanced droplet collision rates and impact velocities in turbulent flows: the effect of poly-dispersity and transient phases. Sci. Rep. 7, 122231.CrossRefGoogle ScholarPubMed
Jaworek, A., Marchewicz, A., Sobczyk, A., Krupa, A. & Czech, T. 2018 Two-stage electrostatic precipitators for the reduction of PM2.5 particle emission. Prog. Energy Combust. Sci. 67, 206233.CrossRefGoogle Scholar
Jayaram, R., Jie, Y., Zhao, L. & Andersson, H. 2020 Clustering of inertial spheres in evolving Taylor-Green vortex flow. Phys. Fluids 32, 043306.CrossRefGoogle Scholar
Jin, X. & Marshall, J. 2017 The role of fluid turbulence on contact electrification of suspended particles. J. Electrostat. 87, 217227.CrossRefGoogle Scholar
Johnson, K., Kendall, K. & Roberts, A. 1971 Surface energy and the contact of elastic solids. Proc. R. Soc. Lond. A 324, 301313.Google Scholar
Jones, T. 1995 Electromechanics of Particles. Cambridge University Press.CrossRefGoogle Scholar
de Jong, J., Salazar, J., Woodward, S., Collins, L. & Meng, H. 2010 Measurement of inertial particle clustering and relative velocity statistics in isotropic turbulence using holographic imaging. Intl J. Multiphase Flow 36, 324332.CrossRefGoogle Scholar
Karnik, A. & Shrimpton, J. 2012 Mitigation of preferential concentration of small inertial particles in stationary isotropic turbulence using electrical and gravitational body force. Phys. Fluids 24, 073301.CrossRefGoogle Scholar
Klix, C., Royall, C. & Tanaka, H. 2010 Structural and dynamical features of multiple metastable glassy states in a colloidal system with competing interactions. Phys. Rev. Lett. 104, 165702.CrossRefGoogle Scholar
Kolehmainen, J., Ozel, A., Boyce, C.M. & Sundaresan, S. 2017 Triboelectric charging of monodisperse particles in fluidized beds. AIChE J. 63, 18721891.CrossRefGoogle Scholar
Kolehmainen, J., Ozzel, A., Gu, Y., Shinbrot, T. & Sundaresan, S. 2018 Effect of polarization on particle-laden flows. Phys. Rev. Lett. 121, 124603.CrossRefGoogle Scholar
Lee, V., Waitukaitis, S., Miskin, M. & Jaeger, H. 2015 Direct observation of particle interactions and clustering in charged granular streams. Nature Phys. 11, 733737.CrossRefGoogle Scholar
Li, S. & Marshall, J. 2007 Discrete element simulation of micro-particle deposition on a cylindrical fiber in an array. J. Aero. Sci. 38, 10311046.CrossRefGoogle Scholar
Li, S., Marshall, J., Liu, G. & Yao, Q. 2011 Adhesive particulate flow: the discrete-element method and its application in energy and environmental engineering. Prog. Energy Combust. Sci. 37, 622668.CrossRefGoogle Scholar
Liu, P. & Hrenya, C. 2018 Cluster-induced deagglomeration in dilute gravity-driven gas-solid flows of cohesive grains. Phys. Rev. Lett. 121, 238001.CrossRefGoogle ScholarPubMed
Liu, G., Marshall, J., Li, S. & Yao, Q. 2010 Discrete-element method for particle capture by a body in an electrostatic field. Intl J. Numer. Meth. Engng 84, 15891612.CrossRefGoogle Scholar
Lu, J., Nordsiek, H., Saw, E. & Shaw, R. 2010 Clustering of charged inertial particles in turbulence. Phys. Rev. Lett. 104, 184505.CrossRefGoogle ScholarPubMed
Lu, J. & Shaw, R. 2015 Charged particle dynamics in turbulence: theory and direct numerical simulations. Phys. Fluids 27, 065111.CrossRefGoogle Scholar
Marchioli, C. & Soldati, A. 2002 Mechanisms for particle transfer and segregation in a turbulent boundary layer. J. Fluid Mech. 468, 283315.CrossRefGoogle Scholar
Marshall, J. 2009 Discrete-element modeling of particulate aerosol flows. J. Comput. Phys. 228, 15411561.CrossRefGoogle Scholar
Marshall, J. 2011 Viscous damping force during head-on collision of two spherical particles. Phys. Fluids 23, 013305.CrossRefGoogle Scholar
Marshall, J. & Li, S. 2014 Adhesive Particle Flow: A Discrete-Element Approach. Cambridge University Press.CrossRefGoogle Scholar
Mathai, V., Calzavarini, E., Brons, J., Sun, C. & Lohse, D. 2016 Microbubbles and microspheres are not truthful tracers of turbulent acceleration. Phys. Rev. Lett. 117, 024501.CrossRefGoogle Scholar
Mathai, V., Lohse, D. & Sun, C. 2020 Bubbly and buoyant particle-laden turbulent flows. Annu. Rev. Condens. Matter Phys. 11, 529559.CrossRefGoogle Scholar
Matsuyama, T. & Yamamoto, H. 1995 Charge relaxation process dominates contact charging of a particle in atmospheric conditions. J. Phys. D: Appl. Phys. 28, 24182423.CrossRefGoogle Scholar
Maxey, M. 1987 The gravitational settling of aerosol particles in homogeneous turbulence and random flow fields. J. Fluid Mech. 174, 441465.CrossRefGoogle Scholar
McCarty, L. & Whitesides, G. 2008 Electrostatic charging due to separation of ions at interfaces: contact electrification of ionic electrets. Angew. Chem. Intl Ed. 47, 21882207.CrossRefGoogle ScholarPubMed
Monchaux, R., Bourgoin, M. & Cartellier, A. 2010 Preferential concentration of heavy particles: a Voronoï analysis. Phys. Fluids 22, 103304.CrossRefGoogle Scholar
Onishi, R., Matsuda, K. & Takahashi, K. 2015 Lagrangian tracking simulation of droplet growth in turbulence – turbulence enhancement of autoconversion rate. J. Atmos. Sci. 72, 2591–1607.CrossRefGoogle Scholar
Pähtz, T., Herr,amm, H. & Shinbrot, T. 2010 Why do particle clouds generate electric charges? Nature Phys. 6, 364368.CrossRefGoogle Scholar
Perrin, V. & Jonker, H. 2014 Preferred location of droplet in turbulent flows. Phys. Rev. E 89, 033005.CrossRefGoogle ScholarPubMed
Perrin, V. & Jonker, H. 2016 Effect of the eigenvalues of the velocity gradient tensor on particle collisions. J. Fluid Mech. 792, 3649.CrossRefGoogle Scholar
Picardo, J., Agasthya, L., Govindarajan, R. & Ray, S. 2019 Flow structures govern particle collisions in turbulence. Phys. Rev. Fluids 4, 032601(R).CrossRefGoogle Scholar
Pumir, A. & Wilkinson, M. 2016 Collisional aggregation due to turbulence. Annu. Rev. Condens. Matter Phys. 7, 141–70.CrossRefGoogle Scholar
Reade, W. & Collins, L. 2000 Effect of preferential concentration on turbulent collision rates. Phys. Fluids 12, 25302540.CrossRefGoogle Scholar
Ruan, X., Chen, S. & Li, S. 2020 Structural evolution and breakage of dense agglomerates in shear flow and Taylor-Green vortex. Chem. Engng Sci. 211, 115261.CrossRefGoogle Scholar
Rubinov, S.I. & Keller, J.B. 1961 The transverse force on a spinning sphere moving in a viscous fluid. J. Fluid Mech. 11, 447459.CrossRefGoogle Scholar
Saffman, P. 1965 The lift on a small sphere in a slow shear flow. J. Fluid Mech. 22, 385400.CrossRefGoogle Scholar
Saffman, P. & Turner, J. 1956 On the collision of drops in turbulent clouds. J. Fluid Mech. 1, 1630.CrossRefGoogle Scholar
Salazar, J., de Jong, J., Cao, L., Woodward, S., Meng, H. & Collins, L. 2008 Experimental and numerical investigation of inertial particle clustering in isotropic turbulence. J. Fluid Mech. 600, 245256.CrossRefGoogle Scholar
Salmon, J.K. & Warren, M.S. 1994 Skeletons from the tree code closet. J. Comput. Phys. 111, 136155.CrossRefGoogle Scholar
Saw, E., Bewley, G., Bodenschatz, E., Ray, S. & Bec, J. 2014 Extreme fluctuations of the relative velocities between droplets in turbulent airflow. Phys. Fluids 26, 111702.CrossRefGoogle Scholar
Saw, E., Shaw, R., Ayyalasomayajula, S., Chuang, P. & Gylfason, A. 2008 Inertial clustering of particles in high-Reynolds-number turbulence. Phys. Rev. Lett. 100, 21501.CrossRefGoogle ScholarPubMed
Selomulya, C., Amal, R., Bushell, G. & Waite, T. 2001 Evidence of shear rate dependence on restructuring and breakup of latex aggregates. J. Colloid Interface Sci. 236, 6777.CrossRefGoogle ScholarPubMed
Shaw, R. 2003 Particle-turbulence interactions in atmospheric clouds. Annu. Rev. Fluid Mech. 35, 183227.CrossRefGoogle Scholar
Shrimpton, J. & Yule, A. 1999 Characterisation of charged hydrocarbon sprays for application in combustion systems. Exp. Fluids 26, 460469.CrossRefGoogle Scholar
Smoluchowski, M. 1916 Versuch einer mathematischen Theorie der Koagulationskinetik kolloider Lösungen. Z. Phys. Chem. 92U (1), 129168.Google Scholar
Soh, S., Kwok, S., Liu, H. & Whitesides, G. 2012 Contact de-electrification of electrostatically charged polymers. J. Am. Chem. Soc. 134, 2015120159.CrossRefGoogle ScholarPubMed
Sorensen, C.M. 2010 The mobility of fractal aggregates: a review. Aero. Sci. Technol. 45, 765779.CrossRefGoogle Scholar
Squire, K. & Eaton, J. 1991 Preferential concentration of particles by turbulence. Phys. Fluids A 3, 11691178.CrossRefGoogle Scholar
Sümer, B. & Sitti, M. 2008 Rolling and spinning friction characterization of fine particles using lateral force microscopy based contact pushing. J. Adhes. Sci. Technol. 22, 481506.CrossRefGoogle Scholar
Sun, J., Battaglia, F. & Subramaniam, S. 2006 Dynamics and structures of segregation in a dense, vibrating granular bed. Phys. Rev. E 74, 061307.CrossRefGoogle Scholar
Sundaram, S. & Collins, L. 1997 Collision statistics in an isotropic particle-laden turbulent suspension. Part 1. Direct numerical simulations. J. Fluid Mech. 335, 75109.CrossRefGoogle Scholar
Tagawa, Y., Mercado, J., Prakash, V., Calzavarini, E., Sun, C. & Lohse, D. 2012 Three-dimensional Lagrangian Voronoï analysis for clustering of particles and bubbles in turbulence. J. Fluid Mech. 693, 201215.CrossRefGoogle Scholar
Toschi, F. & Bodenschatz, E. 2009 Lagrandian properties of particles in turbulence. Annu. Rev. Fluid Mech. 41, 375404.CrossRefGoogle Scholar
Tryggvason, G., Scardovelli, R. & Zaleski, S. 2011 Direct Numerical Simulations of Gas-Solid Multiphase Flows. Cambridge University Press.Google Scholar
Tsuji, Y., Tanaka, T. & Ishida, T. 1992 Lagrangian numerical simulation of plug flow of cohesionless particles in a horizontal pipe. Powder Technol. 71, 239250.CrossRefGoogle Scholar
Voßkuhle, M., Pumir, A., Lévêque, E. & Wilkinson, M. 2014 Prevalence of the sling effect for enhancing collision rates in turbulent suspensions. J. Fluid Mech. 749, 841852.CrossRefGoogle Scholar
Waldner, M., Sefcik, J., Soos, M. & Morbidelli, M. 2005 Initial growth kinetics and structure of colloidal aggregates in a turbulent coagulator. Powder Technol. 156, 226234.CrossRefGoogle Scholar
Wang, L. & Maxey, M. 1993 Settling velocity and concentration distribution of heavy particles in homogeneous isotropic turbulence. J. Fluid Mech. 256, 2768.CrossRefGoogle Scholar
Wang, L., Wexler, A. & Zhou, Y. 2000 Statistical mechanical description and modelling of turbulent collision of inertia particles. J. Fluid Mech. 415, 117153.CrossRefGoogle Scholar
Wilkinson, M. & Mehlig, B. 2005 Caustics in turbulent aerosols. Europhys. Lett. 71, 186192.CrossRefGoogle Scholar
Wilkinson, M., Mehlig, B. & Bezuglyy, V. 2006 Caustic activation of rain showers. Phys. Rev. Lett. 97, 048501.CrossRefGoogle ScholarPubMed
Yao, Y. & Capecelatro, J. 2018 Competition between drag and Coulomb interactions in turbulent particle-laden flows using a coupled-fluid-Ewald-summation based approach. Phys. Rev. Fluids 3, 034301.CrossRefGoogle Scholar
Zhang, H. & Zhou, H. 2020 Reconstructing the electrical structure of dust storms from locally observed electric field data. Nature Commun. 11, 5072.CrossRefGoogle ScholarPubMed
Zhao, L., Andersson, H. & Gillissen, J. 2010 Turbulence modulation and drag reduction by spherical particles. Phys. Fluids 22, 081702.CrossRefGoogle Scholar