Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-27T08:39:35.036Z Has data issue: false hasContentIssue false

The effect of electrostatic charges on particle-laden duct flows

Published online by Cambridge University Press:  29 December 2020

Holger Grosshans*
Affiliation:
Physikalisch-Technische Bundesanstalt (PTB), Braunschweig, Germany Institute of Apparatus- and Environmental Technology, Otto von Guericke University of Magdeburg, Germany
Claus Bissinger
Affiliation:
Physikalisch-Technische Bundesanstalt (PTB), Braunschweig, Germany
Mathieu Calero
Affiliation:
Institute of Mechanics, Materials and Civil Engineering, Université catholique de Louvain, Louvain-la-Neuve, Belgium
Miltiadis V. Papalexandris
Affiliation:
Institute of Mechanics, Materials and Civil Engineering, Université catholique de Louvain, Louvain-la-Neuve, Belgium
*
Email address for correspondence: holger.grosshans@ptb.de

Abstract

We report on direct numerical simulations of the effect of electrostatic charges on particle-laden duct flows. The corresponding electrostatic forces are known to affect the particle dynamics at small scales and the associated turbophoretic drift. Our simulations, however, predicted that electrostatic forces also dominate the vortical motion of the particles, induced by the secondary flows of Prandtl's second kind of the carrier fluid. Herein, we treated flows at two frictional Reynolds numbers ($Re_{\tau }= 300$ and 600), two particle-to-gas density ratios ($\rho _{p}/\rho =1000$ and 7500) and three Coulombic-to-gravitational force ratios ($F_{el}/F_{g}=0$, 0.004 and 0.026). In flows with a high density ratio at $Re_{\tau }=600$ and $F_{el}/F_{g}=0.004$, the particles tend to accumulate at the walls. On the other hand, at a lower density ratio, respectively a higher $F_{el}/F_{g}$ of 0.026, the charged particles still follow the secondary flow structures that are developed in the duct. However, even in this case, the electrostatic forces counteract the particles’ inward flux from the wall and, as a result, their vortical motion in these secondary structures is significantly attenuated. This change in the flow pattern results in an increase of the particle number density at the bisectors of the walls by a factor of five compared with the corresponding flow with uncharged particles. Finally, at $Re_{\tau }=300$, $\rho _{p}/\rho =1000$ and $F_{el}/F_{g}=0.026$ the electrostatic forces dominate over the aerodynamic forces and gravity and, consequently, the particles no longer follow the streamlines of the carrier gas.

Type
JFM Papers
Copyright
© The Author(s), 2020. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Böttner, C.-U. & Sommerfeld, M. 2002 Numerical calculation of electrostatic powder painting using the Euler/Lagrange approach. Powder Technol. 125, 206216.CrossRefGoogle Scholar
Boutsikakis, A., Fede, P., Pedrono, A. & Simonin, O. 2020 Numerical simulations of short- and long-range interaction forces in turbulent particle-laden gas flows. Flow Turbul. Combust. 105, 9891015.CrossRefGoogle Scholar
Bradshaw, P. 1987 Turbulent secondary flows. Annu. Rev. Fluid Mech. 19, 5374.CrossRefGoogle Scholar
Brandt, A. & Dinar, N. 1978 Multigrid solutions to elliptic flow problems. In Numerical Methods for Partial Diffential Equations (ed. S. V. Parter). The University of Wisconsin-Madison.CrossRefGoogle Scholar
Campbell, C. S. & Brennen, C. E. 1985 Computer simulations of granular shear flows. J. Fluid Mech. 151, 167188.CrossRefGoogle Scholar
Caporaloni, M., Tampieri, F., Trombetti, F. & Vittori, O. 1975 Transfer of particles in nonisotropic air turbulence. J. Atmos. Sci. 32, 565568.2.0.CO;2>CrossRefGoogle Scholar
Crowe, C., Schwarzkopf, J. D., Sommerfeld, M. & Tsuji, Y. 2012 Multiphase Flows with Droplets and Particles, 2nd edn. CRC Press.Google Scholar
Cundall, P. A. & Strack, O. D. 1979 A discrete numerical model for granular assemblies. Geotechnique 29, 4765.CrossRefGoogle Scholar
Dhodapkar, S. V. 1991 Flow pattern classification in gas-solid suspensions. PhD thesis, University of Pittsburgh.Google Scholar
Eckhoff, R. K. 2003 Dust Explosions in the Process Industries, 3rd edn. Gulf Professional Publishing.CrossRefGoogle Scholar
Ferziger, J. H. & Peric, M. 2002 Computational Methods for Fluid Dynamics, 3rd edn. Springer.CrossRefGoogle Scholar
Fotovat, F., Bi, X. T. & Grace, J. R. 2017 Electrostatics in gas-solid fluidized beds: a review. Chem. Engng Sci. 173, 303334.CrossRefGoogle Scholar
Fotovat, F., Bi, X. T. & Grace, J. R. 2018 A perspective on electrostatics in gas-solid fluidized beds: challenges and future research needs. Powder Technol. 329, 6575.CrossRefGoogle Scholar
Grosshans, H. 2018 Modulation of particle dynamics in dilute duct flows by electrostatic charges. Phys. Fluids 30 (8), 083303.CrossRefGoogle Scholar
Grosshans, H. & Papalexandris, M. V. 2017 a Direct numerical simulation of triboelectric charging in a particle-laden turbulent channel flow. J. Fluid Mech. 818, 465491.CrossRefGoogle Scholar
Grosshans, H. & Papalexandris, M. V. 2017 b On the accuracy of the numerical computation of the electrostatic forces between charged particles. Powder Technol. 322, 185194.CrossRefGoogle Scholar
Grosshans, H., Villafañe, L., Banko, A. & Papalexandris, M. V. 2019 Case study on the influence of electrostatic charges on particle concentration in turbulent duct flows. Powder Technol. 357, 4653.CrossRefGoogle Scholar
Horender, S., Schaub, F. & Sommerfeld, M. 2014 Size resolved droplet velocity measurements in an electrostatic precipitator. Chem. Ing. Tech. 86, 177184.CrossRefGoogle Scholar
Huser, A. & Biringen, S. 1993 Direct numerical simulation of turbulent flow in a square duct. J. Fluid Mech. 257, 6595.CrossRefGoogle Scholar
Jalalinejad, F., Bi, X. T. & Grace, J. R. 2012 Effect of electrostatic charges on single bubble in gas-solid fluidized beds. Intl J. Multiphase Flow 44, 1528.CrossRefGoogle Scholar
Jalalinejad, F., Bi, X. T. & Grace, J. R. 2015 Effect of electrostatics on freely-bubbling beds of mono-sized particles. Intl J. Multiphase Flow 70, 104112.CrossRefGoogle Scholar
Jang, G. S. & Shu, C. W. 1996 Efficient implementation of weighted ENO schemes. J. Comput. Phys. 126, 202228.CrossRefGoogle Scholar
Kawahara, G., Uhlmann, M. & VanVeen, L. 2012 The significance of simple invariant solutions in turbulent flows. Annu. Rev. Fluid Mech. 44, 203225.CrossRefGoogle Scholar
Kim, J., Moin, P. & Moser, R. 1987 Turbulence statistics in fully developed channel flow at low Reynolds number. J. Fluid Mech. 177, 133166.CrossRefGoogle Scholar
Klinzing, G. E. 2018 A review of pneumatic conveying status, advances and projections. Powder Technol. 333, 7890.CrossRefGoogle Scholar
Kolehmainen, J., Ozel, A., Boyce, C. M. & Sundaresan, S. 2016 A hybrid approach to computing electrostatic forces in fluidized beds of charged particles. AIChE J. 62, 228.CrossRefGoogle Scholar
Kolehmainen, J., Ozel, A., Gu, Y., Shinbrot, T. & Sundaresan, S. 2018 Effects of polarization on particle-laden flows. Phys. Rev. Lett. 124503, 15.Google ScholarPubMed
Labair, H., Touhami, S., Tilmatine, A., Hadjeri, S., Medles, K. & Dascalescu, L. 2017 Study of charged particles trajectories in free-fall electrostatic separators. J. Electrostat. 88, 1014.CrossRefGoogle Scholar
Mani, M., Babcock, D., Winkler, C. & Spalart, P. 2013 Predictions of a supersonic turbulent flow in a square duct. In 51st AIAA Aerospace Sciences Meeting.CrossRefGoogle Scholar
Marchioli, C. & Soldati, A. 2002 Mechanisms for particle transfer and segregation in a turbulent boundary layer. J. Fluid Mech. 468, 283315.CrossRefGoogle Scholar
McLaughlin, J. B. 1989 Aerosol particle deposition in numerically simulated channel flow. Phys. Fluids 1, 12111224.CrossRefGoogle Scholar
Myler, C. A. 1987 Use of thermodynamic analogy for horizontal pneumatic conveying. PhD thesis, University of Pittsburgh.Google Scholar
Nezu, I. 2005 Open-channel flow turbulence and its research prospect in the 21st century. ASCE J. Hydraul. Engng 131, 229246.CrossRefGoogle Scholar
Pinelli, A., Uhlmann, M., Sekimoto, A. & Kawahara, G. 2010 Reynolds number dependence of mean flow structure in square duct turbulence. J. Fluid Mech. 644, 107122.CrossRefGoogle Scholar
Pirozzoli, S., Modesti, D., Orlandi, P. & Grasso, F. 2018 Turbulence and secondary motions in square duct flow. J. Fluid Mech. 840, 631655.CrossRefGoogle Scholar
Prandtl, L. 1927 Über die ausgebildete Turbulenz. In Verh. 2nd Int. Kong. für Tech. Mech.Google Scholar
Reeks, M. W. 1983 The transport of discrete particles in inhomogeneous turbulence. J. Aerosol Sci. 14, 729739.CrossRefGoogle Scholar
Rivas, M. A. & Iglesias, T. P. 2007 On permittivity and density of the systems (tetraglyme + dimethyl or diethyl carbonate) and the formulation of $\Delta \varepsilon$ in terms of volume or mole fraction. J. Chem. Thermodyn. 39, 15461556.CrossRefGoogle Scholar
Rokkam, R. G., Fox, R. O. & Muhle, M. E. 2010 Computational fluid dynamics and electrostatic modeling of polymerization fluidized-bed reactors. Powder Technol. 203, 109124.CrossRefGoogle Scholar
Roth, S. D. 1982 Ray casting for modeling solids. Comput. Graphics Image Process. 18, 109144.CrossRefGoogle Scholar
Schiller, L. & Naumann, A. Z. 1933 A drag coefficient correlation. Z. Ver. Dtsch. Ing. 77, 318320.Google Scholar
Schroeder, T. 2001 Collision detection using ray casting. Game Developer Magazine, August, 5056.Google Scholar
Sharma, G. & Phares, D. J. 2006 Turbulent transport of particles in a straight square duct. Intl J. Multiphase Flow 32, 823837.CrossRefGoogle Scholar
Sippola, P., Kolehmainen, J., Ozel, A., Liu, X., Saarenrinna, P. & Sundaresan, S. 2018 Experimental and numerical study of wall layer development in a tribocharged fluidized bed. J. Fluid Mech. 849, 860884.CrossRefGoogle Scholar
Speziale, C. G. 1982 On turbulent secondary flows in pipes of noncircular cross-section. Intl J. Engng Sci. 20, 863872.CrossRefGoogle Scholar
Uhlmann, M., Pinelli, A., Kawahara, G. & Sekimoto, A. 2007 Marginally turbulent flow in a square duct. J. Fluid Mech. 588, 153162.CrossRefGoogle Scholar
Wang, B. 2010 Inter-phase interaction in a turbulent, vertical channel flow laden with heavy particles. Part I: numerical methods and particle dispersion properties. Intl J. Heat Mass Transfer 53, 25062521.CrossRefGoogle Scholar
Wang, Y., Zhao, Y. & Yao, J. 2019 Particle dispersion in turbulent, square open duct flows of high Reynolds number. Powder Technol. 354, 92107.CrossRefGoogle Scholar
Wong, J., Kwok, P. C. L. & Chan, H.-K. 2015 Electrostatics in pharmaceutical solids. Chem. Engng Sci. 125, 225237.CrossRefGoogle Scholar
Yang, Q., Ma, Y., Zhu, J., Chow, K. & Shi, K. 2016 An update on electrostatic powder coating for pharmaceuticals. Particuology 31, 17.CrossRefGoogle Scholar
Yao, Y. & Capacelatro, J. 2016 Competition between drag and coulomb interactions in turbulent particle-laden flows using a coupled-fluid–Ewald-summation based approach. Phys. Rev. Fluids 3, 034301.CrossRefGoogle Scholar
Yao, J. & Fairweather, M. 2010 Inertial particle resuspension in a turbulent, square duct flow. Phys. Fluids 22 (3), 33303.CrossRefGoogle Scholar
Yao, Jun, Li, Jinzhui & Zhao, Yanlin 2020 Investigation of granular dispersion in turbulent pipe flows with electrostatic effect. Adv. Powder Technol. 31 (4), 15431555.CrossRefGoogle Scholar
Zhu, Z., Yang, H. & Chen, T. 2009 Direct numerical simulation of turbulent flow in a straight square duct at Reynolds number 600. J. Hydrodyn. 21, 600607.CrossRefGoogle Scholar