Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-26T01:56:13.190Z Has data issue: false hasContentIssue false

Edge-driven collapse of fluid holes

Published online by Cambridge University Press:  23 October 2023

Huanlei Zhao
Affiliation:
Department of Engineering Mechanics, AML, Tsinghua University, 100084 Beijing, PR China
Bin Zhang
Affiliation:
Department of Engineering Mechanics, AML, Tsinghua University, 100084 Beijing, PR China
Cunjing Lv*
Affiliation:
Department of Engineering Mechanics, AML, Tsinghua University, 100084 Beijing, PR China Center for Nano and Micro Mechanics, Tsinghua University, 100084 Beijing, PR China
*
Email address for correspondence: cunjinglv@tsinghua.edu.cn

Abstract

We study the stability and collapse of holes at the wall in liquid layers on circular bounded containers with various wettabilities. Three distinct wetting modes of the hole are observed, which are related to the wettability of the container: when the substrate and the inner wall of the container are superhydrophobic, a stable hole remains as the liquid volume is continuously increased until the liquid layer covers the entire substrate; when the substrate and the inner wall are hydrophobic, an eye-shaped hole remains stable as the projected area of the hole exceeds a critical value $A_c$, however, the hole collapses if the liquid volume is further increased; when the substrate is superhydrophobic but the wall is hydrophilic, on increasing the liquid volume, the hole suddenly transfers into a circular hole and is pushed against the wall, leaving the hole dwelling around the centre of the container. Theoretical analyses and numerical simulations are conducted to establish the phase diagram for different wetting modes. It is found that, in the second mode, $A_c$ increases with the size of the container but decreases with the contact angle of the substrate and the wall. Furthermore, we experimentally investigate the dynamics of the hole. The time evolution of the area of the hole obeys a scaling relationship $A \sim (t_0 - t)^{1.1}$ after the hole collapses at time $t_0$.

Type
JFM Papers
Copyright
© The Author(s), 2023. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bankoff, S.G., Johnson, M.F.G., Miksis, M.J., Schluter, R.A. & Lopez, P.G. 2003 Dynamics of a dry spot. J. Fluid Mech. 486, 239259.CrossRefGoogle Scholar
Bischof, J., Scherer, D., Herminghaus, S. & Leiderer, P. 1996 Dewetting modes of thin metallic films: nucleation of holes and spinodal dewetting. Phys. Rev. Lett. 77 (8), 15361539.CrossRefGoogle ScholarPubMed
Bostwick, J.B., Dijksman, J.A. & Shearer, M. 2017 Wetting dynamics of a collapsing fluid hole. Phys. Rev. Fluids 2 (1), 014006.CrossRefGoogle Scholar
Brakke, K.A. 1992 The surface evolver. Exp. Maths 1 (2), 141165.CrossRefGoogle Scholar
Buguin, A., Vovelle, L. & Brochard-Wyart, F. 1999 Shocks in inertial dewetting. Phys. Rev. Lett. 83 (6), 11831186.CrossRefGoogle Scholar
Burton, J.C., Waldrep, R. & Taborek, P. 2005 Scaling and instabilities in bubble pinch-off. Phys. Rev. Lett. 94 (18), 184502.CrossRefGoogle ScholarPubMed
Cho, Y.-S., Yi, G.-R., Lim, J.-M., Kim, S.-H., Manoharan, V.N., Pine, D.J. & Yang, S.-M. 2005 Self-organization of bidisperse colloids in water droplets. J. Am. Chem. Soc. 127 (45), 1596815975.CrossRefGoogle ScholarPubMed
Chu, C.L., Zhao, Y.G., Hao, P.F. & Lv, C.J. 2023 Wetting state transitions of individual condensed droplets on pillared textured surfaces. Soft Matt. 19, 670678.CrossRefGoogle ScholarPubMed
Crawford, S., Lim, S.K. & Gradecak, S. 2013 Fundamental insights into nanowire diameter modulation and the liquid/solid interface. Nano Lett. 13 (1), 226232.CrossRefGoogle ScholarPubMed
Culick, F.E. 1960 Comments on a ruptured soap film. J. Appl. Phys. 31 (6), 11281129.CrossRefGoogle Scholar
Dević, I., Encarnación, E., José, M. & Lohse, D. 2019 Equilibrium drop shapes on a tilted substrate with a chemical step. Langmuir 35 (11), 38803886.CrossRefGoogle ScholarPubMed
Diez, J.A., Gratton, R. & Gratton, J. 1992 Self-similar solution of the second kind for a convergent viscous gravity current. Phys. Fluids A 4 (6), 11481155.CrossRefGoogle Scholar
Dijksman, J.A., Mukhopadhyay, S., Gaebler, C., Witelski, T.P. & Behringer, R.P. 2015 Obtaining self-similar scalings in focusing flows. Phys. Rev. E 92 (4), 043016.CrossRefGoogle ScholarPubMed
Dupeux, G., Bourrianne, P., Magdelaine, Q., Clanet, C. & Quéré, D. 2014 Propulsion on a superhydrophobic ratchet. Sci. Rep. 4 (1), 5280.CrossRefGoogle ScholarPubMed
Eggers, J., Fontelos, M.A., Leppinen, D. & Snoeijer, J.H. 2007 Theory of the collapsing axisymmetric cavity. Phys. Rev. Lett. 98 (9), 094502.CrossRefGoogle ScholarPubMed
Ferrer, A.J., Halajko, A. & Amatucci, G.G. 2014 Micro-patterning of metallic film structures through direct-write dewetting. Adv. Engng Mater. 16 (9), 11671178.CrossRefGoogle Scholar
de Gennes, P.-G., Brochard-Wyart, F. & Quéré, D. 2003 Capillarity and Wetting Phenomena: Drops, Bubbles, Pearls, Waves. Springer.Google Scholar
Gordillo, J.M., Sevilla, A., Rodríguez-Rodríguez, J. & Martínez-Bazán, C. 2005 Axisymmetric bubble pinch-off at high Reynolds numbers. Phys. Rev. Lett. 95 (19), 194501.CrossRefGoogle ScholarPubMed
Gratton, J. & Minotti, F. 1990 Self-similar viscous gravity currents: phase-plane formalism. J. Fluid Mech. 210, 155182.CrossRefGoogle Scholar
Kabla, A. & Debregeas, G. 2007 Quasi-static rheology of foams. Part 1. Oscillating strain. J. Fluid Mech. 587, 2344.CrossRefGoogle Scholar
Kim, T. & Kim, W. 2018 Viscous dewetting of metastable liquid films on substrates with microgrooves. J. Colloid Interface Sci. 520, 1118.CrossRefGoogle ScholarPubMed
Kim, S., Kim, J. & Kim, H.-Y. 2019 Dewetting of liquid film via vapour-mediated Marangoni effect. J. Fluid Mech. 872, 100114.CrossRefGoogle Scholar
Kumar, S. 2015 Liquid transfer in printing processes: liquid bridges with moving contact lines. Annu. Rev. Fluid Mech. 47, 6794.CrossRefGoogle Scholar
Lamb, H. 1916 Statics. Cambridge University Press.Google Scholar
Landau, L.D. & Lifshitz, E.M. 1987 Fluid Mechanics, 2nd edn. Pergamon Press.Google Scholar
Langbein, D.W. 2002 Capillary Surfaces: Shape-Stability-Dynamics, in Particular Under Weightlessness, 178th edn. Springer Science & Business Media.CrossRefGoogle Scholar
Lee, A., Brun, P.-T., Marthelot, J., Balestra, G., Gallaire, F. & Reis, P.M. 2016 Fabrication of slender elastic shells by the coating of curved surfaces. Nat. Commun. 7 (1), 11155.CrossRefGoogle ScholarPubMed
Lohse, D. 2018 Bubble puzzles: from fundamentals to applications. Phys. Rev. Fluids 3 (11), 110504.CrossRefGoogle Scholar
Longuet-Higgins, M.S., Kerman, B.R. & Lunde, K. 1991 The release of air bubbles from an underwater nozzle. J. Fluid Mech. 230, 365390.CrossRefGoogle Scholar
López, P.G., Miksis, M.J. & Bankoff, S.G. 2001 Stability and evolution of a dry spot. Phys. Fluids 13 (6), 16011614.CrossRefGoogle Scholar
Lu, J.K. & Corvalan, C.M. 2019 Dynamical transitions during the collapse of inertial holes. Sci. Rep. 9 (1), 14649.CrossRefGoogle ScholarPubMed
Lu, J.K., Ferri, M., Ubal, S., Campanella, O. & Corvalan, C.M. 2019 Contraction of a shear-thinning axisymmetric cavity. Phys. Fluids 31 (12), 123103.CrossRefGoogle Scholar
Lv, C.J., Chen, C., Chuang, Y.-C., Tseng, F.-G., Yin, Y.J., Grey, F. & Zheng, Q.S. 2014 Substrate curvature gradient drives rapid droplet motion. Phys. Rev. Lett. 113 (2), 026101.CrossRefGoogle ScholarPubMed
Lv, C.J., Eigenbrod, M. & Hardt, S. 2018 Stability and collapse of holes in liquid layers. J. Fluid Mech. 855, 11301155.CrossRefGoogle Scholar
Lv, C.J. & Hardt, S. 2021 Wetting of a liquid annulus in a capillary tube. Soft Matt. 17 (7), 17561772.CrossRefGoogle Scholar
Lv, C.J. & Shi, S.L. 2018 Wetting states of two-dimensional drops under gravity. Phys. Rev. E 98 (4), 042802.CrossRefGoogle Scholar
Martin, A., Buguin, A. & Brochard-Wyart, F. 2001 Dewetting nucleation centers at soft interfaces. Langmuir 17 (21), 65536559.CrossRefGoogle Scholar
Michalet, X. 2007 Equilibrium shape degeneracy in starfish vesicles. Phys. Rev. E 76 (2), 021914.CrossRefGoogle ScholarPubMed
Moriarty, J.A. & Schwartz, L.W. 1993 Dynamic considerations in the closing and opening of holes in thin liquid films. J. Colloid Interface Sci. 161 (2), 335342.CrossRefGoogle Scholar
Mulji, N. & Chandra, S. 2010 Rupture and dewetting of water films on solid surfaces. J. Colloid Interface Sci. 352 (1), 194201.CrossRefGoogle ScholarPubMed
Ni, Z.Y., Chu, F.Q., Li, S.K., Luo, J. & Wen, D.S. 2021 Impact-induced hole growth and liquid film dewetting on superhydrophobic surfaces. Phys. Fluids 33 (11), 112113.CrossRefGoogle Scholar
Norbury, J., Sander, G.C. & Scott, C.F. 2005 Corner solutions of the Laplace–Young equation. Q. J. Mech. Appl. Maths 58 (1), 5571.CrossRefGoogle Scholar
Oguz, H.N. & Prosperetti, A. 1993 Dynamics of bubble growth and detachment from a needle. J. Fluid Mech. 257, 111145.CrossRefGoogle Scholar
Padday, J.F. 1971 The profiles of axially symmetric menisci. Phil. Trans. R. Soc. Lond. A 269 (1197), 265293.Google Scholar
Redon, C., Brochard-Wyart, F. & Rondelez, F. 1991 Dynamics of dewetting. Phys. Rev. Lett. 66 (6), 715718.CrossRefGoogle ScholarPubMed
Sakashita, A., Urakami, N., Ziherl, P. & Imai, M. 2012 Three-dimensional analysis of lipid vesicle transformations. Soft. Matt. 8 (33), 85698581.CrossRefGoogle Scholar
Schäffer, E., Harkema, S., Roerdink, M., Blossey, R. & Steiner, U. 2003 Thermomechanical lithography: pattern replication using a temperature gradient driven instability. Adv. Mater. 15 (6), 514517.CrossRefGoogle Scholar
Sharma, A. & Ruckenstein, E. 1990 Energetic criteria for the breakup of liquid films on nonwetting solid surfaces. J. Colloid Interface Sci. 137 (2), 433445.CrossRefGoogle Scholar
Taylor, G.I. & Michael, D.H. 1973 On making holes in a sheet of fluid. J. Fluid Mech. 58 (4), 625639.CrossRefGoogle Scholar
Thoroddsen, S.T., Etoh, T.G. & Takehara, K. 2007 Experiments on bubble pinch-off. Phys. Fluids 19 (4), 042101.CrossRefGoogle Scholar
Vakarelski, I.U., Patankar, N.A., Marston, J.O., Chan, D.Y.C. & Thoroddsen, S.T. 2012 Stabilization of Leidenfrost vapour layer by textured superhydrophobic surfaces. Nature 489 (7415), 274277.CrossRefGoogle ScholarPubMed
Weinstein, S.J. & Ruschak, K.J. 2004 Coating flows. Annu. Rev. Fluid Mech. 36, 2953.CrossRefGoogle Scholar
Wilson, S.K. & Duffy, B.R. 1996 An asymptotic analysis of small holes in thin fluid layers. J. Engng Maths 30 (4), 445457.CrossRefGoogle Scholar
Zheng, Z., Fontelos, M.A., Shin, S., Dallaston, M.C., Tseluiko, D., Kalliadasis, S. & Stone, H.A. 2018 a Healing capillary films. J. Fluid Mech. 838, 404434.CrossRefGoogle Scholar
Zheng, Z., Fontelos, M.A., Shin, S. & Stone, H.A. 2018 b Universality in the nonlinear leveling of capillary films. Phys. Rev. Fluids 3 (3), 032001.CrossRefGoogle Scholar

Zhao et al. Supplementary Movie 1

Download Zhao et al. Supplementary Movie 1(Video)
Video 10 MB

Zhao et al. Supplementary Movie 2

Download Zhao et al. Supplementary Movie 2(Video)
Video 10 MB

Zhao et al. Supplementary Movie 3

Download Zhao et al. Supplementary Movie 3(Video)
Video 10 MB

Zhao et al. Supplementary Movie 4

Download Zhao et al. Supplementary Movie 4(Video)
Video 203.1 KB

Zhao et al. Supplementary Movie 5

Download Zhao et al. Supplementary Movie 5(Video)
Video 152.2 KB

Zhao et al. Supplementary Movie 6

Download Zhao et al. Supplementary Movie 6(Video)
Video 246 KB

Zhao et al. Supplementary Movie 7

Download Zhao et al. Supplementary Movie 7(Video)
Video 10 MB
Supplementary material: PDF

Zhao et al. supplementary material

Zhao et al. supplementary material

Download Zhao et al. supplementary material(PDF)
PDF 835.1 KB