Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-25T13:08:16.415Z Has data issue: false hasContentIssue false

Dynamics of ferrofluid drop deformations under spatially uniform magnetic fields

Published online by Cambridge University Press:  03 August 2016

P. Rowghanian
Affiliation:
Department of Mechanical Engineering, and California NanoSystems Institute, University of California, Santa Barbara, CA 93106, USA
C. D. Meinhart
Affiliation:
Department of Mechanical Engineering, and California NanoSystems Institute, University of California, Santa Barbara, CA 93106, USA
O. Campàs*
Affiliation:
Department of Mechanical Engineering, and California NanoSystems Institute, University of California, Santa Barbara, CA 93106, USA
*
Email address for correspondence: campas@engineering.ucsb.edu

Abstract

We systematically study the shape and dynamics of a Newtonian ferrofluid drop immersed in an immiscible, Newtonian and non-magnetic viscous fluid under the action of a uniform external magnetic field. We obtain the exact equilibrium drop shapes for arbitrary ferrofluids, characterize the extent of deviations of the exact shape from the commonly assumed ellipsoidal shape, and analyse the smoothness of highly curved tips in elongated drops. We also present a comprehensive study of drop deformation for a Langevin ferrofluid. Using a computational scheme that allows fast and accurate simulations of ferrofluid drop dynamics, we show that the dynamics of drop deformation by an applied magnetic field is described up to a numerical factor by the same time scale as drop relaxation in the absence of any magnetic field. The numerical factor depends on the ratio of viscosities and the ratio of magnetic to capillary stresses, but is independent of the nature of the ferrofluid in most practical cases.

Type
Papers
Copyright
© 2016 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abou, B., Wesfreid, J.-E. & Roux, S. 2000 The normal field instability in ferrofluids: hexagon–square transition mechanism and wavenumber selection. J. Fluid Mech. 416, 217237.Google Scholar
Acero, A. J., Ferrera, C., Montanero, J. M., Herrada, M. A. & López-Herrera, J. M. 2013 Experimental analysis of the evolution of an electrified drop following high voltage switching. Eur. J. Mech. (B/Fluids) 38, 5864.CrossRefGoogle Scholar
Afkhami, S., Renardy, Y., Renardy, M., Riffle, J. S. & St Pierre, T. 2008 Field-induced motion of ferrofluid droplets through immiscible viscous media. J. Fluid Mech. 610, 363380.Google Scholar
Afkhami, S., Tyler, A. J., Renardy, Y., Renardy, M., St Pierre, T. G., Woodward, R. C. & Riffle, J. S. 2010 Deformation of a hydrophobic ferrofluid droplet suspended in a viscous medium under uniform magnetic fields. J. Fluid Mech. 663, 358384.Google Scholar
Allan, R. S. & Mason, S. G. 1962 Particle behaviour in shear and electric fields. I. Deformation and burst of fluid drops. Proc. R. Soc. Lond. A 267 (1328), 4561.Google Scholar
Arkhipenko, V. I., Barkov, Y. D. & Bashtovoi, V. G. 1979 Shape of a drop of magnetized fluid in a homogeneous magnetic field. Magn. Gidrodin. 14, 131134.Google Scholar
Bacri, J.-C., Cebers, A. O. & Perzynski, R. 1994 Behavior of a magnetic fluid microdrop in a rotating magnetic field. Phys. Rev. Lett. 72 (17), 27052708.CrossRefGoogle Scholar
Bacri, J. C. & Salin, D. 1982 Instability of ferrofluid magnetic drops under magnetic field. J. Phys. Lett. 43 (17), 649654.CrossRefGoogle Scholar
Basaran, O. A., Patzek, T. W., Benner, R. E. Jr & Scriven, L. E. 1995 Nonlinear oscillations and breakup of conducting, inviscid drops in an externally applied electric field. Ind. Engng Chem. Res. 34 (10), 34543465.Google Scholar
Basaran, O. A. & Wohlhuter, F. K. 1992 Effect of nonlinear polarization on shapes and stability of pendant and sessile drops in an electric (magnetic) field. J. Fluid Mech. 244, 116.CrossRefGoogle Scholar
Boudouvis, A. G., Puchalla, J. L., Scriven, L. E. & Rosensweig, R. E. 1987 Normal field instability and patterns in pools of ferrofluid. J. Magn. Magn. Mater. 65 (2), 307310.Google Scholar
Bychkova, A. V., Sorokina, O. N., Rosenfeld, M. A. & Kovarski, A. L. 2012 Multifunctional biocompatible coatings on magnetic nanoparticles. Russ. Chem. Rev. 81 (11), 10261050.CrossRefGoogle Scholar
Cao, Y. & Ding, Z. J. 2014 Formation of hexagonal pattern of ferrofluid in magnetic field. J. Magn. Magn. Mater. 355, 9399.Google Scholar
Cebers, A. & Kalis, H. 2012 Mathematical modelling of an elongated magnetic droplet in a rotating magnetic field. Math. Modelling Numer. Anal. 17 (1), 4757.Google Scholar
Champion, J. A. & Mitragotri, S. 2006 Role of target geometry in phagocytosis. Proc. Natl Acad. Sci. USA 103 (13), 49304934.Google Scholar
Chen, C.-Y., Chen, C.-H. & Lee, W.-F. 2009 Experiments on breakups of a magnetic fluid drop through a micro-orifice. J. Magn. Magn. Mater. 321 (20), 35203525.Google Scholar
Chen, C.-Y. & Cheng, Z.-Y. 2008 An experimental study on Rosensweig instability of a ferrofluid droplet. Phys. Fluids 20 (5), 054105.CrossRefGoogle Scholar
Chilcott, M. D. & Rallison, J. M. 1988 Creeping flow of dilute polymer solutions past cylinders and spheres. J. Non-Newtonian Fluid Mech. 29, 381432.CrossRefGoogle Scholar
Collins, R. T., Harris, M. T. & Basaran, O. A. 2007 Breakup of electrified jets. J. Fluid Mech. 588, 75.Google Scholar
Corson, L. T., Tsakonas, C., Duffy, B. R., Mottram, N. J., Sage, I. C., Brown, C. V. & Wilson, S. K. 2014 Deformation of a nearly hemispherical conducting drop due to an electric field: theory and experiment. Phys. Fluids 26 (12), 122106.Google Scholar
Cox, R. G. 1969 The deformation of a drop in a general time-dependent fluid flow. J. Fluid Mech. 37 (03), 601623.CrossRefGoogle Scholar
Datta, S., Das, A. K. & Das, P. K. 2015 Uphill movement of sessile droplets by electrostatic actuation. Langmuir 31 (37), 1019010197.Google Scholar
Deshmukh, S. D. & Thaokar, R. M. 2012 Deformation, breakup and motion of a perfect dielectric drop in a quadrupole electric field. Phys. Fluids 24 (3), 032105.Google Scholar
Engel, A., Langer, H. & Chetverikov, V. 1999 Non-linear analysis of the surface profile resulting from the one-dimensional Rosensweig instability. J. Magn. Magn. Mater. 195 (1), 212219.Google Scholar
Esmaeeli, A. & Sharifi, P. 2011a The transient dynamics of a liquid column in a uniform transverse electric field of small strength. J. Electrostat. 69 (6), 504511.Google Scholar
Esmaeeli, A. & Sharifi, P. 2011b Transient electrohydrodynamics of a liquid drop. Phys. Rev. E 84 (3), 036308.Google Scholar
Feng, J. Q. & Scott, T. C. 1996 A computational analysis of electrohydrodynamics of a leaky dielectric drop in an electric field. J. Fluid Mech. 311, 289326.Google Scholar
Ferrera, C., López-Herrera, J. M., Herrada, M. A., Montanero, J. M. & Acero, A. J. 2013 Dynamical behavior of electrified pendant drops. Phys. Fluids 25 (1), 012104.Google Scholar
Friberg, S., Larsson, K. & Sjoblom, J. 2003 Food Emulsions. CRC Press.Google Scholar
Gollwitzer, C., Matthies, G., Richter, R., Rehberg, I. & Tobiska, L. 2007 The surface topography of a magnetic fluid: a quantitative comparison between experiment and numerical simulation. J. Fluid Mech. 571, 455474.CrossRefGoogle Scholar
Gupta, A. K. & Gupta, M. 2005 Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials 26 (18), 39954021.Google Scholar
Karyappa, R. B., Naik, A. V. & Thaokar, R. M. 2015 Electroemulsification in a uniform electric field. Langmuir 32 (1), 4654.Google Scholar
Kumar, C. S. S. R. & Mohammad, F. 2011 Magnetic nanomaterials for hyperthermia-based therapy and controlled drug delivery. Adv. Drug Deliv. Rev. 63 (9), 789808.Google Scholar
Kushch, V. I., Sangani, A. S., Spelt, P. D. M. & Koch, D. L. 2002 Finite-Weber-number motion of bubbles through a nearly inviscid liquid. J. Fluid Mech. 460, 241280.Google Scholar
Lac, E. & Homsy, G. M. 2007 Axisymmetric deformation and stability of a viscous drop in a steady electric field. J. Fluid Mech. 590, 239264.Google Scholar
Lanauze, J. A., Walker, L. M. & Khair, A. S. 2015 Nonlinear electrohydrodynamics of slightly deformed oblate drops. J. Fluid Mech. 774, 245266.Google Scholar
Landau, L. D., Pitaevskii, L. P. & Lifshitz, E. M. 1984 Electrodynamics of Continuous Media. Elsevier.Google Scholar
Laurent, S., Dutz, S., Häfeli, U. O. & Mahmoudi, M. 2011 Magnetic fluid hyperthermia: focus on superparamagnetic iron oxide nanoparticles. Adv. Colloid Interface Sci. 166 (1), 823.Google Scholar
Lavrova, O., Matthies, G., Mitkova, T., Polevikov, V. & Tobiska, L. 2006 Numerical treatment of free surface problems in ferrohydrodynamics. J. Phys.: Condens. Matter 18 (38), S2657S2669.Google Scholar
Lavrova, O., Matthies, G., Polevikov, V. & Tobiska, L. 2004 Numerical modeling of the equilibrium shapes of a ferrofluid drop in an external magnetic field. Proc. Appl. Maths Mech. 4 (1), 704705.Google Scholar
Li, H., Halsey, T. C. & Lobkovsky, A. 1994 Singular shape of a fluid drop in an electric or magnetic field. Europhys. Lett. 27 (8), 575.Google Scholar
Mandal, S., Chaudhury, K. & Chakraborty, S. 2014 Transient dynamics of confined liquid drops in a uniform electric field. Phys. Rev. E 89 (5), 053020.Google Scholar
Meiron, D. I. 1989 On the stability of gas bubbles rising in an inviscid fluid. J. Fluid Mech. 198, 101114.Google Scholar
Melcher, J. R. & Taylor, G. I. 1969 Electrohydrodynamics: a review of the role of interfacial shear stresses. Annu. Rev. Fluid Mech. 1, 111146.Google Scholar
Miksis, M. J. 1981 Shape of a drop in an electric field. Phys. Fluids 24 (11), 19671972.CrossRefGoogle Scholar
Mizuta, Y. 2011 Stability analysis on the free surface phenomena of a magnetic fluid for general use. J. Magn. Magn. Mater. 323 (10), 13541359.Google Scholar
Nguyen, N.-T., Ng, K. M. & Huang, X. 2006 Manipulation of ferrofluid droplets using planar coils. Appl. Phys. Lett. 89 (5), 052509.Google Scholar
Nielloud, F. & Marti-Mestres, G. 2000 Pharmaceutical Emulsions and Suspensions: Revised and Expanded. CRC Press.Google Scholar
Notz, P. K. & Basaran, O. A. 1999 Dynamics of drop formation in an electric field. J. Colloid Interface Sci. 213 (1), 218237.Google Scholar
Paknemat, H., Pishevar, A. R. & Pournaderi, P. 2012 Numerical simulation of drop deformations and breakup modes caused by direct current electric fields. Phys. Fluids 24 (10), 102101.Google Scholar
Pillai, R., Berry, J. D., Harvie, D. J. E. & Davidson, M. R. 2015 Electrolytic drops in an electric field: a numerical study of drop deformation and breakup. Phy. Rev. E 92 (1), 013007.Google Scholar
Potts, H. E., Barrett, R. K. & Diver, D. A. 2001 Dynamics of freely-suspended drops. J. Phys. D: Appl. Phys. 34 (17), 2529.CrossRefGoogle Scholar
Rallison, J. M. 1984 The deformation of small viscous drops and bubbles in shear flows. Annu. Rev. Fluid Mech. 16 (1), 4566.Google Scholar
Ramaswamy, S. & Leal, L. G. 1999 The deformation of a newtonian drop in the uniaxial extensional flow of a viscoelastic liquid. J. Non-Newtonian Fluid Mech. 88 (1), 149172.CrossRefGoogle Scholar
Rhodes, S., He, X., Elborai, S., Lee, S.-H. & Zahn, M. 2006 Magnetic fluid behavior in uniform dc, ac, and rotating magnetic fields. J. Electrostat. 64 (7), 513519.CrossRefGoogle Scholar
Rosenkilde, C. E. 1969 A dielectric fluid drop in an electric field. Proc. R. Soc. Lond. A 312 (1511), 473494.Google Scholar
Rosensweig, R. E. 2013 Ferrohydrodynamics. Courier Corporation.Google Scholar
Salipante, P. F. & Vlahovska, P. M. 2010 Electrohydrodynamics of drops in strong uniform dc electric fields. Phys. Fluids 22 (11), 112110.Google Scholar
Saville, D. A. 1997 Electrohydrodynamics: the Taylor–Melcher leaky dielectric model. Annu. Rev. Fluid Mech. 29, 2764.CrossRefGoogle Scholar
Schmitz, R. & Felderhof, B. U. 1982 Creeping flow about a spherical particle. Physica A 113 (1), 90102.CrossRefGoogle Scholar
Sero-Guillaume, O. E., Zouaoui, D., Bernardin, D. & Brancher, J. P. 1992 The shape of a magnetic liquid drop. J. Fluid Mech. 241, 215232.Google Scholar
Shapiro, B., Kulkarni, S., Nacev, A., Muro, S., Stepanov, P. Y. & Weinberg, I. N. 2015 Open challenges in magnetic drug targeting. WIREs Nanomed. Nanobiotechnol. 7 (3), 446457.Google Scholar
Shaw, S. J. & Spelt, P. D. M. 2009 Critical strength of an electric field whereby a bubble can adopt a steady shape. Proc. R. Soc. Lond. A 465, 31273143.Google Scholar
Sherwood, J. D. 1988 Breakup of fluid droplets in electric and magnetic fields. J. Fluid Mech. 188, 133146.Google Scholar
Sherwood, J. D. 1991 The deformation of a fluid drop in an electric field: a slender-body analysis. J. Phys. A: Math. Gen. 24 (17), 4047.Google Scholar
Shi, D., Bi, Q. & Zhou, R. 2014 Numerical simulation of a falling ferrofluid droplet in a uniform magnetic field by the VOSET method. Numer. Heat Transfer 66 (2), 144164.Google Scholar
Shliomis, M. I. 1972 Effective viscosity of magnetic suspensions. Zh. Eksp. Teor. Fiz. 61, 24112418.Google Scholar
Sjoblom, J. 2005 Emulsions and Emulsion Stability. (Surfactant Science Series) , vol. 132. CRC Press.Google Scholar
Stierstadt, K. & Liu, M. 2015 Maxwell’s stress tensor and the forces in magnetic liquids. Z. Angew. Math. Mech. 95 (1), 437.Google Scholar
Stone, H. A., Lister, J. R. & Brenner, M. P. 1999 Drops with conical ends in electric and magnetic fields. Proc. R. Soc. Lond. A 455 (1981), 329347.CrossRefGoogle Scholar
Taylor, G. I. 1934 The formation of emulsions in definable fields of flow. Proc. R. Soc. Lond. A 146, 501523.Google Scholar
Taylor, G. I. 1964 Disintegration of water drops in an electric field. Proc. R. Soc. Lond. A 280 (1382), 383397.Google Scholar
Tretheway, D. C. & Leal, L. G. 2001 Deformation and relaxation of Newtonian drops in planar extensional flows of a Boger fluid. J. Non-Newtonian Fluid Mech. 99 (2), 81108.CrossRefGoogle Scholar
Tsebers, A. 1985 Virial method of investigation of statics and dynamics of drops of magnetizable liquids. Magnetohydrodynamics (United States) 21 (1), 1926 (Engl. Transl.).Google Scholar
Wehking, J. D. & Kumar, R. 2015 Droplet actuation in an electrified microfluidic network. Lab on a Chip 15 (3), 793801.Google Scholar
Wohlhuter, F. K. & Basaran, O. A. 1992 Shapes and stability of pendant and sessile dielectric drops in an electric field. J. Fluid Mech. 235, 481510.Google Scholar
Wohlhuter, F. K. & Basaran, O. A. 1993 Effects of physical properties and geometry on shapes and stability of polarizable drops in external fields. J. Magn. Magn. Mater. 122 (1), 259263.Google Scholar
Zakinyan, A., Nechaeva, O. & Dikansky, Y. 2012 Motion of a deformable drop of magnetic fluid on a solid surface in a rotating magnetic field. Exp. Therm. Fluid Sci. 39, 265268.Google Scholar
Zhou, C., Yue, P., Feng, J. J., Ollivier-Gooch, C. F. & Hu, H. H. 2010 3D phase-field simulations of interfacial dynamics in Newtonian and viscoelastic fluids. J. Comput. Phys. 229 (2), 498511.Google Scholar
Zhu, G.-P., Nguyen, N.-T., Ramanujan, R. V. & Huang, X.-Y. 2011 Nonlinear deformation of a ferrofluid droplet in a uniform magnetic field. Langmuir 27 (24), 1483414841.Google Scholar
Zimny, K., Mascaro, B., Brunet, T., Poncelet, O., Aristégui, C., Leng, J., Sandre, O. & Mondain-Monval, O. 2014 Design of a fluorinated magneto-responsive material with tuneable ultrasound scattering properties. J. Mater. Chem. B 2 (10), 12851297.Google Scholar