Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-12T05:48:02.790Z Has data issue: false hasContentIssue false

Dynamic coupling between carrier and dispersed phases in Rayleigh–Bénard convection laden with inertial isothermal particles

Published online by Cambridge University Press:  11 November 2021

Wenwu Yang
Affiliation:
Shanghai Institute of Applied Mathematics and Mechanics, School of Mechanics and Engineering Science, and Shanghai Key Laboratory of Mechanics in Energy Engineering, Shanghai University, Shanghai 200072, China
Yi-Zhao Zhang
Affiliation:
Shanghai Institute of Applied Mathematics and Mechanics, School of Mechanics and Engineering Science, and Shanghai Key Laboratory of Mechanics in Energy Engineering, Shanghai University, Shanghai 200072, China
Bo-Fu Wang
Affiliation:
Shanghai Institute of Applied Mathematics and Mechanics, School of Mechanics and Engineering Science, and Shanghai Key Laboratory of Mechanics in Energy Engineering, Shanghai University, Shanghai 200072, China
Yuhong Dong*
Affiliation:
Shanghai Institute of Applied Mathematics and Mechanics, School of Mechanics and Engineering Science, and Shanghai Key Laboratory of Mechanics in Energy Engineering, Shanghai University, Shanghai 200072, China
Quan Zhou
Affiliation:
Shanghai Institute of Applied Mathematics and Mechanics, School of Mechanics and Engineering Science, and Shanghai Key Laboratory of Mechanics in Energy Engineering, Shanghai University, Shanghai 200072, China
*
Email address for correspondence: dongyh@shu.edu.cn

Abstract

We investigate the dynamic couplings between particles and fluid in turbulent Rayleigh–Bénard (RB) convection laden with isothermal inertial particles. Direct numerical simulations combined with the Lagrangian point-particle mode were carried out in the range of Rayleigh number $1\times 10^6 \le {Ra}\le 1 \times 10^8$ at Prandtl number ${Pr}=0.678$ for three Stokes numbers ${St_f}=1 \times 10^{-3}$, $8 \times 10^{-3}$ and $2.5 \times 10^{-2}$. It is found that the global heat transfer and the strength of turbulent momentum transfer are altered a small amount for the small Stokes number and large Stokes number as the coupling between the two phases is weak, whereas they are enhanced a large amount for the medium Stokes number due to strong coupling of the two phases. We then derived the exact relation of kinetic energy dissipation in the particle-laden RB convection to study the budget balance of induced and dissipated kinetic energy. The strength of the dynamic coupling can be clearly revealed from the percentage of particle-induced kinetic energy over the total induced kinetic energy. We further derived the power law relation of the averaged particles settling rate versus the Rayleigh number, i.e. $S_p/(d_p/H)^2{\sim} Ra^{1/2}$, which is in remarkable agreement with our simulation. We found that the settling and preferential concentration of particles are strongly correlated with the coupling mechanisms.

Type
JFM Papers
Copyright
© The Author(s), 2021. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Ahlers, G., Grossmann, S. & Lohse, D. 2009 Heat transfer and large scale dynamics in turbulent Rayleigh–Bénard convection. Rev. Mod. Phys. 81, 503537.CrossRefGoogle Scholar
Ahmed, A.M. & Elghobashi, S. 2000 On the mechanisms of modifying the structure of turbulent homogeneous shear flows by dispersed particles. Phys. Fluids 12 (11), 29062930.CrossRefGoogle Scholar
Balachandar, S. & Eaton, J.K. 2010 Turbulent dispersed multiphase flow. Annu. Rev. Fluid Mech. 42, 111–33.CrossRefGoogle Scholar
Bec, J., Homann, H. & Ray, S.S. 2014 Gravity-driven enhancement of heavy particle clustering in turbulent flow. Phy. Rev. Lett. 112, 184501.CrossRefGoogle ScholarPubMed
Boivin, M., Simonin, O. & Squires, K.D. 1998 Direct numerical simulation of turbulence modulation by particles in isotropic turbulence. J. Fluid Mech. 375, 235263.CrossRefGoogle Scholar
Bosse, T., Kleiser, L. & Meiburg, E. 2006 Small particles in homogeneous turbulence: settling velocity enhancement by two-way coupling. Phys. Fluids 18, 027102.CrossRefGoogle Scholar
Boussinesq, J. 1903 Theorie Analytique de la Chaleur. Vol. 2. Gauthier-Villars.Google Scholar
Carbone, M., Bragg, A.D. & Iovieno, M. 2019 Multiscale fluid–particle thermal interaction in isotropic turbulence. J. Fluid Mech. 881, 679721.CrossRefGoogle Scholar
Cherukat, P., Mclaughlin, J.B. & Dandy, D.S. 1998 A computational study of the inertial lift on a sphere in a linear shear flow field. Intl J. Multiphase Flow 25, 1533.CrossRefGoogle Scholar
Chillà, F. & Schumacher, J. 2012 New perspectives in turbulent Rayleigh–Bénard convection. Eur. Phys. J. E 35, 58.CrossRefGoogle ScholarPubMed
Chung, J.N. & Troutt, T.R. 1988 Simulation of particle dispersion in an axisymmetric jet. J. Fluid Mech. 186, 199222.CrossRefGoogle Scholar
Crowe, C.T. 1982 Review: numerical models for dilute gas-particle flows. ASME J. Fluids Engng 104, 297303.CrossRefGoogle Scholar
Crowe, C.T., Gore, R. & Troutt, T.R. 1985 Particles dispersion by coherent structures in free shear flows. Particul. Sci. Technol. 3, 149158.CrossRefGoogle Scholar
Crowe, C.T., Troutt, T.R. & Chung, J.N. 1996 Numerical models for two-phase turbulent flows. Annu. Rev. Fluid Mech. 28, 1143.CrossRefGoogle Scholar
Davis, D., Jafarian, M., Chinnici, A., Saw, W.L. & Nathan, G.J. 2019 Thermal performance of vortex-based solar particle receiver for sensible heating. Sol. Energy 177, 163177.CrossRefGoogle Scholar
Dong, Y. & Chen, L. 2011 The effect of stable stratification and thermophoresis on fine particle deposition in a bounded turbulent flow. Intl J. Heat Mass Transfer 54, 11681178.CrossRefGoogle Scholar
Druzhinin, O.A. & Elghobashi, S. 1999 On the decay rate of isotropic turbulence laden with microparticles. Phys. Fluids 11 (3), 602610.CrossRefGoogle Scholar
Elghobashi, S. 1991 Particle-laden turbulent flows: direct simulation and closure models. Appl. Sci. Res. 48, 301314.CrossRefGoogle Scholar
Elghobashi, S. 1994 On predicting particle-laden turbulent flows. Appl. Sci. Res. 52, 309329.CrossRefGoogle Scholar
Elghobashi, S. 2019 DNS of turbulent flows laden with droplets or bubbles. Annu. Rev. Fluid Mech. 51, 217244.CrossRefGoogle Scholar
Elghobashi, S. & Truesdell, G.C. 1992 Direct simulation of particle dispersion in a decaying isotropic turbulence. J. Fluid Mech. 242, 655700.CrossRefGoogle Scholar
Elghobashi, S. & Truesdell, G.C. 1993 On the two-way interaction between homogeneous turbulence and dispersed solid particles. I: turbulence modification. Phys. Fluids A 5 (7), 17901801.CrossRefGoogle Scholar
Ferrante, A. & Elghobashi, S. 2003 On the physical mechanisms of two-way coupling in particle-laden isotropic turbulence. Phys. Fluids 15 (2), 315329.CrossRefGoogle Scholar
Frankel, A., Pouransari, H., Coletti, F. & Mani, A. 2016 Settling of heated particles in homogeneous turbulence. J. Fluid Mech. 792, 869893.CrossRefGoogle Scholar
Gereltbyamba, B. & Lee, C. 2019 Flow modification by inertial particles in a differentially heated cubic cavity. Intl J. Heat Fluid Flow 78, 108445.CrossRefGoogle Scholar
Good, G., Gerashchenko, S. & Warhaft, Z. 2012 Intermittency and inertial particle entrainment at a turbulent interface: the effect of the large-scale eddies. J. Fluid Mech. 694, 371398.CrossRefGoogle Scholar
Grossmann, S. & Lohse, D. 2000 Scaling in thermal convection: a unifying theory. J. Fluid Mech. 407, 2756.CrossRefGoogle Scholar
Guha, A. 2008 Transport and deposition of particles in turbulent and laminar flow. Annu. Rev. Fluid Mech. 40, 311341.CrossRefGoogle Scholar
Hanna, S.R. 1969 The formation of longitudinal sand dunes by large helical eddies in the atmosphere. J. Appl. Meteorol. 8 (6), 874883.2.0.CO;2>CrossRefGoogle Scholar
Huang, S.-D., Kaczorowski, M., Ni, R. & Xia, K.-Q. 2013 Confinement-induced heat-transport enhancement in turbulent thermal convection. Phys. Rev. Lett. 111, 104501.CrossRefGoogle ScholarPubMed
Hunt, J.C.R. 1991 Industrial and environmental fluid mechanics. Annu. Rev. Fluid Mech. 23, 141.CrossRefGoogle Scholar
Ireland, P.J., Bragg, A.D. & Collins, L.R. 2016 The effect of Reynolds number on inertial particle dynamics in isotropic turbulence. Part 1. Simulations without gravitational effects. J. Fluid Mech. 796, 617658.CrossRefGoogle Scholar
Jellinek, A.M. & Kerr, R.C. 2001 Magma dynamics, crystallization, and chemical differentiation of the 1959 Kilauea Iki lava lake, Hawaii, revisited. J. Volcanol. Geotherm. Res. 110, 235263.CrossRefGoogle Scholar
Kok, J.F., Parteli, E.J., Michaels, T.I. & Karam, D.B. 2012 The physics of wind-blown sand and dust. Rep. Prog. Phys. 75, 106901.CrossRefGoogle Scholar
Kraichnan, R.H. 1967 Inertial ranges in two-dimensional turbulence. Phys. Fluids 10 (7), 14171423.CrossRefGoogle Scholar
Kulick, J.D., Fessler, J.R. & Eaton, J.K. 1994 Particle response and turbulence modification in fully developed channel flow. J. Fluid Mech. 277 (1), 109134.CrossRefGoogle Scholar
Kurose, R. & Komori, S. 1999 Drag and lift forces on a rotating sphere in a linear shear flow. J. Fluid Mech. 384, 183206.CrossRefGoogle Scholar
Landau, L.D. & Lifshitz, E.M. 1987 Fluid Mechanics. Pergamon.Google Scholar
Lázaro, B.J. & Lasheras, J.C. 1992 Particle dispersion in the developing free shear layer. Part 2. Forced flow. J. Fluid Mech. 235, 179211.CrossRefGoogle Scholar
Liu, C., Tang, S., Dong, Y. & Shen, L. 2018 Heat transfer modulation by inertial particles in particle-laden turbulent channel flow. Trans. ASME J. Heat Transfer 140 (11), 112003.CrossRefGoogle Scholar
Lohse, D. & Xia, K.-Q. 2010 Small-scale properties of turbulent Rayleigh–Bénard convection. Annu. Rev. Fluid Mech. 42, 335364.CrossRefGoogle Scholar
Longmire, E.K. & Eaton, J.K. 1992 Structure of a particle-laden round jet. J. Fluid Mech. 236, 217257.CrossRefGoogle Scholar
Loth, E. 2000 Numerical approaches for motion of dispersed particles, droplets and bubbles. Prog. Energy Combust. Sci. 26, 161223.CrossRefGoogle Scholar
Maxey, M.R. 1987 The gravitational settling of aerosol particles in homogeneous turbulence and random flow fields. J. Fluid Mech. 174, 441465.CrossRefGoogle Scholar
Maxey, M.R. & Corrsin, S. 1986 Gravitational settling of aerosol particles in randomly oriented cellular flow fields. J. Atmos. Sci. 43, 11121134.2.0.CO;2>CrossRefGoogle Scholar
Mei, R. 1992 An approximate expression for the shear lift force on a spherical particle at finite Reynolds number. Intl J. Multiphase Flow 18, 145147.CrossRefGoogle Scholar
Momenifar, M. & Bragg, A.D. 2020 Local analysis of the clustering, velocities and accelerations of particles settling in turbulence. Phys. Rev. Fluids 5, 034306.CrossRefGoogle Scholar
Monchaux, R., Bourgoin, M. & Cartellier, A. 2010 Preferential concentration of heavy particles: a Voronoï analysis. Phys. Fluids 22, 11121134.CrossRefGoogle Scholar
Nielsen, P. 1993 Turbulence effects on the settling of suspended particles. J. Sedim. Petrol. 63, 835838.Google Scholar
Oresta, P. & Prosperetti, A. 2013 Effects of particle settling on Rayleigh–Bénard convection. Phys. Rev. E 87, 063014.CrossRefGoogle ScholarPubMed
Park, H.J., O'Keefe, K. & Richter, D.H. 2018 Rayleigh–Bénard turbulence modified by two-way coupled inertial, nonisothermal particles. Phys. Rev. Fluids 3, 034307.CrossRefGoogle Scholar
Patočka, V., Calzavarini, E. & Tosi, N. 2020 Settling of inertial particles in turbulent Rayleigh–Bénard convection. Phys. Rev. Fluids 5, 114304.CrossRefGoogle Scholar
van der Poel, E.P., Stevens, R.J. & Lohse, D. 2013 Comparison between two- and three-dimensional Rayleigh–Bénard convection. J. Fluid. Mech. 736, 117197.CrossRefGoogle Scholar
Pouransari, H. & Mani, A. 2017 Effects of preferential concentration on heat transfer in particle-based solar receivers. J. Solar Energy Engng 139, 021008.CrossRefGoogle Scholar
Pouransari, H. & Mani, A. 2018 Particle-to-fluid heat transfer in particle-laden turbulence. Phys. Rev. Fluids 3, 074304.CrossRefGoogle Scholar
Puragliesi, R., Dehbi, A., Leriche, E., Soldati, A. & Deville, M.O. 2011 DNS of buoyancy-driven flows and Lagrangian particle tracking in a square cavity at high Rayleigh numbers. Intl J. Heat Fluid Flow 32, 915931.CrossRefGoogle Scholar
Reeks, M.W. 1983 The transport of discrete particles in inhomogeneous turbulence. J. Aerosol Sci. 14, 729739.CrossRefGoogle Scholar
Saffman, P.G. 1965 The lift on a small sphere in a slow shear flow. J. Fluid Mech. 22, 385400.CrossRefGoogle Scholar
Shaw, R.A. 2003 Particle-turbulence interactions in atmospheric clouds. Annu. Rev. Fluid Mech. 35, 183227.CrossRefGoogle Scholar
Shotorban, B., Mashayek, F. & Pandya, R. 2003 Temperature statistics in particle-laden turbulent homogeneous shear flow. Intl J. Multiphase Flow 29 (8), 117153.CrossRefGoogle Scholar
Shraiman, B.I. & Siggia, E.D. 1990 Heat transport in high-Rayleigh number convection. Phys. Rev. A 43, 36503653.CrossRefGoogle Scholar
Siggia, E.D. 1994 High Rayleigh number convection. Annu. Rev. Fluid Mech. A 26, 137168.CrossRefGoogle Scholar
Squires, K.D. & Eaton, J.K. 1991 Preferential concentration of particles by turbulence. Phys. Fluids 3, 19891993.CrossRefGoogle Scholar
Stevens, R.J.A.M., Verzicco, R. & Lohse, D. 2010 Radial boundary layer structure and Nusselt number in Rayleigh–Bénard convection. J. Fluid Mech. 643, 495507.CrossRefGoogle Scholar
Talbot, L., Cheng, R.K., Schefer, R.W. & Willis, D.R. 1980 Thermophoresis of particles in a heated boundary layer. J. Fluid Mech. 101, 737758.CrossRefGoogle Scholar
Tom, J. & Bragg, A.D. 2019 Multiscale preferential sweeping of particles settling in turbulence. J. Fluid Mech. 871, 244270.CrossRefGoogle Scholar
Wang, B.-F., Zhou, Q. & Sun, C. 2020 Vibration-induced boundary-layer destabilization achieves massive heat-transport enhancement. Sci. Adv. 6 (21), eaaz8239.CrossRefGoogle ScholarPubMed
Wang, L.-P. & Maxey, M.R. 1993 Settling velocity and concentration distribution of heavy particles in homogeneous isotropic turbulence. J. Fluid Mech. 256, 2768.CrossRefGoogle Scholar
Whitehead, J.P. & Doering, C.R. 2011 Ultimate state of two-dimensional Rayleigh–Bénard convection between free-slip fixed-temperature boundaries. Phys. Rev. Lett. 106, 244501.CrossRefGoogle ScholarPubMed
Xia, K.-Q. 2013 Current trends and future directions in turbulent thermal convection. Theor. Appl. Mech. Lett. 3, 052001.CrossRefGoogle Scholar
Xu, A., Tao, S., Shi, L. & Xi, H.-D. 2020 Transport and deposition of dilute microparticles in turbulent thermal convection. Phys. Fluids 32, 083301.CrossRefGoogle Scholar
Yang, J.-L., Zhang, Y.-Z., Jin, T.-C., Dong, Y., Wang, B.-F. & Zhou, Q. 2021 The $Pr$-dependence of the critical roughness height in two-dimensional turbulent Rayleigh–Bénard convection. J. Fluid Mech. 911, A52.CrossRefGoogle Scholar
Zamansky, R., Coletti, F., Massot, M. & Mani, A. 2014 Radiation induces turbulence in particle-laden fluids. Phys. Fluids 26 (7), 111133.CrossRefGoogle Scholar
Zamansky, R., Coletti, F., Massot, M. & Mani, A. 2016 Turbulent thermal convection driven by heated inertial particles. J. Fluid Mech. 809, 390437.CrossRefGoogle Scholar
Zhang, Y., Zhou, Q. & Sun, C. 2017 Statistics of kinetic and thermal energy dissipation rates in two-dimensional turbulent Rayleigh–Bénard convection. J. Fluid Mech. 814, 165184.CrossRefGoogle Scholar
Zonta, F., Marchioli, C. & Soldati, A. 2008 Direct numerical simulation of turbulent heat transfer modulation in micro-dispersed channel flow. Acta Mech. 195 (1–4), 304326.CrossRefGoogle Scholar