Hostname: page-component-5b777bbd6c-w9n4q Total loading time: 0 Render date: 2025-06-24T20:22:37.949Z Has data issue: false hasContentIssue false

Dual scaling and the $2/3$ power law for the second-order scalar structure function in homogeneous turbulence with a mean scalar gradient

Published online by Cambridge University Press:  24 June 2025

Shunlin Tang*
Affiliation:
Center for Turbulence Control, Harbin Institute of Technology, Shenzhen 518055, PR China
R.A. Antonia
Affiliation:
School of Engineering, University of Newcastle, Newcastle, NSW 2308, Australia
Lyazid Djenidi
Affiliation:
School of Electrical and Mechanical Engineering, Faculty of Sciences, Engineering and Technology, The University of Adelaide, Adelaide 5005, Australia Department of Mechanical Engineering, Indian Institute of Technology - Bombay, Powai, Mumbai 400076, India
Luminita Danaila
Affiliation:
CNRS, UNIROUEN, UNICAEN, M2C, Normandie University, Rouen 76000, France
*
Corresponding author: Shunlin Tang, shunlin.tang88@gmail.com

Abstract

A dual scaling of the second-order scalar structure function $\overline {{(\delta \theta )}^2}$, i.e. a scaling based on the Batchelor–Kolmogorov scales $\theta _B$, $\eta$ and another based on $\theta '$, $L$, representative of the large-scale motion, is examined in the context of the transport equation for $\overline {{(\delta \theta )}^2}$. Direct numerical simulation data over a relatively wide range of the Taylor microscale Reynolds number $Re_\lambda$ and a Schmidt number of order 1 in statistically stationary homogeneous isotropic turbulence with a uniform mean scalar gradient are used. It is observed that as $Re_\lambda$ increases, a dual scaling appears to emerge, where the scaling based on $\theta '$, $L$ extends to increasingly smaller values of $r/L$, where $r$ is the separation associated with the increment $ {{\delta \theta }}$, while the scaling based on $\theta _B$, $\eta$ extends to increasingly larger values of $r/\eta$. This suggests that both scalings should eventually overlap over a range of scales as $Re_\lambda$ continues to increase. Further, it is shown that such a dual scaling leads to the power-law relation $\overline {{(\delta \theta )}^2} \sim r^{\zeta _2}$, where $\zeta _2=2/3$ in the overlap region. The use of an empirical model for the local slope of $\overline {{(\delta \theta )}^2}$ (i.e. $\zeta _2$) shows that a value of $Re_\lambda$ of order $10^4$ is required for the slope to first reach the value $2/3$. Clearly, values larger than $10^4$ will be required before a $r^{2/3}$ inertial range is established.

Type
JFM Papers
Copyright
© The Author(s), 2025. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Antonia, R.A., Hopfinger, E.J., Gagne, Y. & Anselmet, F. 1984 Temperature structure functions in turbulent shear flows. Phys. Rev. A 30 (5), 27042707.10.1103/PhysRevA.30.2704CrossRefGoogle Scholar
Antonia, R.A. & Orlandi, P. 2002 Dependence of the second-order scalar structure function on the Schmidt number. Phys. Fluids 14 (4), 15521554.10.1063/1.1458010CrossRefGoogle Scholar
Antonia, R.A., Zhou, T. & Xu, G. 2000 Second-order temperature and velocity structure functions: Reynolds number dependence. Phys. Fluids 12 (6), 15091517.10.1063/1.870399CrossRefGoogle Scholar
Briard, A. & Gomez, T. 2017 Dynamics of helicity in homogeneous skew-isotropic turbulence. J. Fluid Mech. 821, 539581.10.1017/jfm.2017.260CrossRefGoogle Scholar
Buaria, D., Clay, M.P., Sreenivasan, K.R. & Yeung, P.K. 2021 Turbulence is an ineffective mixer when Schmidt numbers are large. Phys. Rev. Lett. 126 (7), 074501.10.1103/PhysRevLett.126.074501CrossRefGoogle Scholar
Chassaing, P., Antonia, R.A., Anselmet, F., Joly, L. & Sarkar, S. 2002 Variable Density Fluid Turbulence. Kluwer Academic Publishers.10.1007/978-94-017-0075-7CrossRefGoogle Scholar
Corrsin, S. 1951 On the spectrum of isotropic temperature fluctuations in an isotropic turbulence. J. Appl. Phys. 22 (4), 469473.10.1063/1.1699986CrossRefGoogle Scholar
Danaila, L. & Mydlarski, L. 2001 Effect of gradient production on scalar fluctuations in decaying grid turbulence. Phys. Rev. E 64 (1), 016316.10.1103/PhysRevE.64.016316CrossRefGoogle ScholarPubMed
Djenidi, L., Antonia, R.A. & Tang, S.L. 2022 Modelling the transport equation of the scalar structure function. J. Fluid Mech. 946, A42.10.1017/jfm.2022.632CrossRefGoogle Scholar
Djenidi, L., Antonia, R.A. & Tang, S.L. 2023 Scaling of turbulent velocity structure functions: plausibility constraints. J. Fluid Mech. 965, A14.10.1017/jfm.2023.416CrossRefGoogle Scholar
Donzis, D.A., Sreenivasan, K.R. & Yeung, P.K. 2005 Scalar dissipation rate and dissipative anomaly in isotropic turbulence. J. Fluid Mech. 532, 199216.10.1017/S0022112005004039CrossRefGoogle Scholar
Gamard, S. & George, W.K. 2000 Reynolds number dependence of energy spectra in the overlap region of isotropic turbulence. Flow Turbul. Combust. 63 (1–4), 443477.10.1023/A:1009988321057CrossRefGoogle Scholar
Gauding, M. 2014 Statistics and scaling laws of turbulent scalar mixing at high Reynolds numbers. PhD thesis, RWTH Aachen University.Google Scholar
Gauding, M., Danaila, L. & Varea, E. 2017 High-order structure functions for passive scalar fed by a mean gradient. Intl J. Heat Fluid Flow 67, 8693.10.1016/j.ijheatfluidflow.2017.05.009CrossRefGoogle Scholar
Gotoh, T. & Watanabe, T. 2012 Scalar flux in a uniform mean scalar gradient in homogeneous isotropic steady turbulence. Physica D 241 (3), 141148.10.1016/j.physd.2010.12.009CrossRefGoogle Scholar
Gotoh, T. & Watanabe, T. 2015 Power and nonpower laws of passive scalar moments convected by isotropic turbulence. Phys. Rev. Lett. 115 (11), 114502.10.1103/PhysRevLett.115.114502CrossRefGoogle ScholarPubMed
Gotoh, T., Watanabe, T. & Suzuki, Y. 2011 Universality and anisotropy in passive scalar fluctuations in turbulence with uniform mean gradient. J. Turbul. 12, 127.10.1080/14685248.2011.631926CrossRefGoogle Scholar
Iyer, K.P., Schumacher, J., Sreenivasan, K.R. & Yeung, P.K. 2018 Steep cliffs and saturated exponents in three-dimensional scalar turbulence. Phys. Rev. Lett. 121 (26), 264501.10.1103/PhysRevLett.121.264501CrossRefGoogle ScholarPubMed
Kolmogorov, A.N. 1941 Local structure of turbulence in an incompressible fluid for very large Reynolds numbers. Dokl. Akad. Nauk SSSR 30, 299303.Google Scholar
Kolmogorov, A.N. 1962 A refinement of previous hypotheses concerning the local structure of turbulence in a viscous incompressible fluid at high Reynolds number. J. Fluid Mech. 13 (1), 8285.10.1017/S0022112062000518CrossRefGoogle Scholar
Lemay, J., Djenidi, L. & Antonia, R.A. 2020 Estimation of mean turbulent kinetic energy and temperature variance dissipation rates using a spectral chart method. Phys. Fluids 32 (5), 055109.10.1063/5.0006923CrossRefGoogle Scholar
Lepore, J. & Mydlarski, L. 2009 Effect of the scalar injection mechanism on passive scalar structure functions in a turbulent flow. Phys. Rev. Lett. 103 (3), 034501.10.1103/PhysRevLett.103.034501CrossRefGoogle Scholar
Lepore, J. & Mydlarski, L. 2012 Finite-Péclet-number effects on the scaling exponents of high-order passive scalar structure functions. J. Fluid Mech. 713, 453481.10.1017/jfm.2012.469CrossRefGoogle Scholar
Monin, A.S. & Yaglom, A.M. 1975 Statistical Fluid Dynamics. MIT Press.Google Scholar
Mydlarski, L. & Warhaft, Z. 1998 Passive scalar statistics in high-Péclet-number grid turbulence. J. Fluid Mech. 358, 135175.10.1017/S0022112097008161CrossRefGoogle Scholar
Obukhov, A.M. 1949 Structure of the temperature field in turbulent flows. Izv. Akad. Nauk SSSR Geogr. Geofiz. 13, 5869.Google Scholar
Obukhov, A.M. 1962 Some specific features of atmospheric turbulence. J. Fluid Mech. 13 (1), 7781.10.1017/S0022112062000506CrossRefGoogle Scholar
Shete, K.P., Boucher, D.J., Riley, J.J. & de Bruyn Kops, S.M. 2022 Effect of viscous-convective subrange on passive scalar statistics at high Reynolds number. Phys. Rev. Fluids 7 (2), 024601.10.1103/PhysRevFluids.7.024601CrossRefGoogle Scholar
Shraiman, B.I. & Siggia, E.D. 2000 Scalar turbulence. Nature 405 (6787), 639646.10.1038/35015000CrossRefGoogle ScholarPubMed
Sreenivasan, K. & Antonia, R.A. 1997 The phenomenology of small-scale turbulence. Ann. Rev. Fluid Mech. 29 (1), 435472.10.1146/annurev.fluid.29.1.435CrossRefGoogle Scholar
Tang, S., Danaila, L., Antonia, R.A. & Danaila, L. 2024 Finite Reynolds number effect on small-scale statistics in decaying grid turbulence. Atmosphere-BASEL 15 (5), 540.10.3390/atmos15050540CrossRefGoogle Scholar
Tang, S.L., Antonia, R.A. & Djenidi, L. 2023 Dual scaling and the n-thirds law in grid turbulence. J. Fluid Mech. 975, A32.10.1017/jfm.2023.888CrossRefGoogle Scholar
Tennekes, I. & Lumley, J. 1972 A First Course in Turbulence. MIT Press.10.7551/mitpress/3014.001.0001CrossRefGoogle Scholar
Warhaft, Z. 2000 Passive scalars in turbulent flows. Annu. Rev. Fluid Mech. 32 (1), 203240.10.1146/annurev.fluid.32.1.203CrossRefGoogle Scholar
Watanabe, T. & Gotoh, T. 2004 Statistics of a passive scalar in homogeneous turbulence. New J. Phys. 6, 40.10.1088/1367-2630/6/1/040CrossRefGoogle Scholar
Watanabe, T. & Gotoh, T. 2007 Inertial-range intermittency and accuracy of direct numerical simulation for turbulence and passive scalar turbulence. J. Fluid Mech. 590, 117146.10.1017/S0022112007008002CrossRefGoogle Scholar
Yaglom, A.M. 1949 On the local structure of a temperature field in a turbulent flow. Dokl. Akad. Nauk SSSR 69, 743746.Google Scholar
Yeung, P.K., Xu, S. & Sreenivasan, K.R. 2002 Schmidt number effects on turbulent transport with uniform mean scalar gradient. Phys. Fluids 14 (12), 41784191.10.1063/1.1517298CrossRefGoogle Scholar